Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Петровская Анна Викторовна

Должность: Директор

Дата подписания: 09.10.2025 16:20:04

Уникальный программный ключ:

79 МИНИСТЕРСТВО ИЗАУКИЛИ ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего образования

«Российский экономический университет имени Г.В. Плеханова» Краснодарский филиал РЭУ им. Г.В. Плеханова

Отдел среднего профессионального образования

УТВЕРЖДАЮ Начальник отдела СПО

/С.А. Марковская/ Инициалы и Фамилия

«27» мая 2025г.

полпись

КОМПЛЕКТ КОНТРОЛЬНО-ИЗМЕРИТЕЛЬНЫХ МАТЕРИАЛОВ по дисциплине

ОУД.13 МАТЕМАТИКА

(код и наименование дисциплины)

образовательной программы среднего профессионального образования подготовки специалистов среднего звена

По специальности: 38.02.08 Торговое дело

(код и наименование специальности)

Квалификация: специалист торгового дела

Образовательная база подготовки: Основное общее образование

основное общее образование, среднее общее образование

Форма обучения: очная очная, заочная

Комплект контрольно-измерительных материалов разработан на основе Федерального государственного образовательного стандарта по специальности среднего профессионального образования и Федерального государственного образовательного стандарта среднего профессионального образования по специальности 38.02.08 Торговое дело, для квалификации специалист торгового дела

Уровень подготовки - базовый, программы общеобразовательной дисциплины ОУД.13 «Математика»

Разработчики:

Жайкова А.А, Золотарева С.И., преподаватели отдела СПО, Краснодарского филиала ФГБОУ

(место работы, занимаемая должность, фамилия, инициалы)

ВО РЭУ им. Г.В. Плеханова

Одобрено на заседании предметно-цикловой комиссии <u>цикла общеобразовательных дисциплин</u> наименование специальности

Протокол № 10 от « 27 » мая 2025 года

Председатель предметно-цикловой комиссии

/Лукинова И. Ю./ Инициалы и Фамилия

Паспорт комплекта контрольно-измерительных материалов по общеобразовательной дисциплине ОУД.13 Математика

		Контрольно-измерительные материа			
Контролируемые	Формируемые	Количество	Другие оценочны	ые средства	
разделы, темы	компетенции	тестовых	Вид		
P ,		заданий	измерительных	Количество	
D 1 H			материалов		
Раздел 1. Повторени		и основной ш	КОЛЫ	I	
Тема 1.2. Числа и	ЛР 01, ЛР 03, ЛР				
вычисления	04, ЛР 06, ЛР				
	08, ЛР 09, МР 01, МР 02, МР				
	03, ПРб 01, ПРб				
	02, ПРб 03, ПРб				
	04, ПРб 05, ПРб		Самостоятельная		
	06, ПРб 07, ПРб	-	работа	14	
	08, ПРб 09, ПРб		paoora		
	10, ПРб 11, ПРб				
	12, ПРб 13, ПРб				
	14, OK 1, OK 2,				
	OK 3, OK 4, OK				
	5, OK 6, OK 7				
Раздел 2. Степени и	корни. Степенная,	показательна	я и логарифмическа	я функции	
Тема 2.1.	ЛР 01, ЛР 03, ЛР				
Арифметический	04, ЛР 06, ЛР				
корень п-ой степени.	08, ЛР 09, МР				
	01, MP 02, MP				
	03, ПРб 01, ПРб				
	02, ПРб 03, ПРб		Самостоятельная		
	04, ПРб 05, ПРб	_	работа	32	
	06, ПРб 07, ПРб		puooru	32	
	08, ПРб 09, ПРб				
	10, ПРб 11, ПРб				
	12, ПРб 13, ПРб				
	14, OK 1, OK 2,				
	OK 3, OK 4, OK				
Тема 2.7 Решение	5, ОК 6, ОК 7 ЛР 01, ЛР 03, ЛР				
показательных	04, ЛР 06, ЛР				
уравнений и	04, ЛГ 00, ЛГ 08, ЛР 09, МР				
неравенств	01, MP 02, MP				
поравоноть	03, ПРб 01, ПРб				
	02, ПРб 03, ПРб		Самостоятельная	4.0	
	04, ПРб 05, ПРб	-	работа	10	
	06, ПРб 07, ПРб				
	08, ПРб 09, ПРб				
	10, ПРб 11, ПРб				
	12, ПРб 13, ПРб				
	14, OK 1, OK 2,				

	OK 2 OK 4 OK			
	OK 3, OK 4, OK			
	5, OK 6, OK 7			
Тема 2.15	ЛР 01, ЛР 03, ЛР			
Применение	04, ЛР 06, ЛР			
логарифмов к	08, ЛР 09, МР			
решению задач	01, MP 02, MP			
	03, ПРб 01, ПРб			
	02, ПРб 03, ПРб		Самостоятельная	
	04, ПРб 05, ПРб		работа	24
	06, ПРб 07, ПРб	_	paoora	24
	08, ПРб 09, ПРб			
	10, ПРб 11, ПРб			
	12, ПРб 13, ПРб			
	14, OK 1, OK 2,			
	OK 3, OK 4, OK			
	5, OK 6, OK 7			
Раздел 3 Прямые и п	лоскости в простр	анстве. Коорд	инаты и векторы в п	ространстве
Тема 3.4. Углы	ЛР 01, ЛР 03, ЛР	70		
между прямыми и	04, ЛР 06, ЛР			
плоскостями	08, ЛР 09, МР			
	01, MP 02, MP			
	03, ПРб 01, ПРб			
	02, ПРб 03, ПРб			
	04, ПРб 05, ПРб		Самостоятельная	
	06, ПРб 07, ПРб	-	работа	12
	08, ПРб 09, ПРб			
	10, ПРб 11, ПРб			
	12, ПРб 13, ПРб			
	14, OK 1, OK 2,			
	OK 3, OK 4, OK			
	, ,			
D 4 IC	5, OK 6, OK 7			
Раздел 4. Координати			<u> </u>	
Тема 4.2.	ЛР 01, ЛР 03, ЛР			
Координаты в	04, ЛР 06, ЛР			
пространстве.	08, ЛР 09, МР			
Простейшие задачи	01, MP 02, MP			
в координатах	03, ПРб 01, ПРб			
	02, ПРб 03, ПРб			
	04, ПРб 05, ПРб	18	Тест	_
	06, ПРб 07, ПРб			
	08, ПРб 09, ПРб			
	10, ПРб 11, ПРб			
	12, ПРб 13, ПРб			
	14, OK 1, OK 2,			
	OK 3, OK 4, OK			
	5, OK 6, OK 7			
Раздел 5. Основы тра		гонометричесь	кие функции	
Тема 5.1. Основы	ЛР 01, ЛР 03, ЛР			
тригонометрии	04, ЛР 06, ЛР		Самостоятельная	
	08, ЛР 09, МР			20
	01, MP 02, MP	-	работа	20
	03, ПРб 01, ПРб			
	02, ПРб 03, ПРб			
	, ,			

	08, ПРб 09, ПРб			
	10, ПРб 11, ПРб			
	12, ПРб 13, ПРб			
	14, OK 1, OK 2,			
	OK 3, OK 4, OK			
	5, OK 6, OK 7			
Тема 5.8	ЛР 01, ЛР 03, ЛР			
Тригонометрические	04, ЛР 06, ЛР			
уравнения и	08, ЛР 09, МР			
неравенства	01, MP 02, MP			
1	03, ПРб 01, ПРб			
	02, ПРб 03, ПРб			
	04, ПРб 05, ПРб		Самостоятельная	2.6
	06, ПРб 07, ПРб	-	работа	36
	08, ПРб 09, ПРб			
	10, ПРб 11, ПРб			
	12, ПРб 13, ПРб			
	14, OK 1, OK 2,			
	OK 3, OK 4, OK			
	5, OK 6, OK 7			
Раздел 6. Производна		я функции		
Тема 6.8	ЛР 01, ЛР 03, ЛР	,		
Исследование	04, ЛР 06, ЛР			
функций и	08, ЛР 09, МР			
построение	01, MP 02, MP			
графиков	03, ПРб 01, ПРб			
	02, ПРб 03, ПРб			
	04, ПРб 05, ПРб		Самостоятельная	10
	06, ПРб 07, ПРб	-	работа	12
	08, ПРб 09, ПРб			
	10, ПРб 11, ПРб			
	12, ПРб 13, ПРб			
	14, OK 1, OK 2,			
	OK 3, OK 4, OK			
	5, OK 6, OK 7			
Раздел 7. Многогран	ники и тела вращ	ения		
Тема 7.13 Понятие	ЛР 01, ЛР 03, ЛР			
об объеме тела.	04, ЛР 06, ЛР			
Объемы	08, ЛР 09, МР			
многогранников и	01, MP 02, MP			
тел вращения	03, ПРб 01, ПРб			
	02, ПРб 03, ПРб		Сомостоятонимоя	
	04, ПРб 05, ПРб		Самостоятельная работа	30
	06, ПРб 07, ПРб	_	раоота	30
	08, ПРб 09, ПРб			
	10, ПРб 11, ПРб			
	12, ПРб 13, ПРб			
İ	14, OK 1, OK 2,			
	ОК 3, ОК 4, ОК			
Раздел 8. Первообраз	OK 3, OK 4, OK 5, OK 6, OK 7			

TD 0.1	HD 01 HD 02 HD			I
Тема 8.1	ЛР 01, ЛР 03, ЛР			
Первообразная	04, ЛР 06, ЛР			
функции	08, ЛР 09, МР			
	01, MP 02, MP			
	03, ПРб 01, ПРб			
	02, ПРб 03, ПРб			
	04, ПРб 05, ПРб		Темы докладов	3
	06, ПРб 07, ПРб	-		3
	08, ПРб 09, ПРб			
	10, ПРб 11, ПРб			
	12, ПРб 13, ПРб			
	14, OK 1, OK 2,			
	OK 3, OK 4, OK			
	5, OK 6, OK 7			
Раздел 9. Элементы 1	комбинаторики, ст	гатистики и те	ории вероятностей	
Тема 9.7 Решение	ЛР 01, ЛР 03, ЛР			
задач	04, ЛР 06, ЛР			
комбинаторики,	08, ЛР 09, МР			
статистики и теории	01, MP 02, MP			
вероятностей	03, ПРб 01, ПРб			
	02, ПРб 03, ПРб			
	04, ПРб 05, ПРб		Темы докладов	1.1
	06, ПРб 07, ПРб	-		11
	08, ПРб 09, ПРб			
	10, ПРб 11, ПРб			
	12, ПРб 13, ПРб			
	14, OK 1, OK 2,			
	OK 3, OK 4, OK			
	5, OK 6, OK 7			

Формы и методы контроля по элементам, составляющим общеобразовательную дисциплину, представлены в таблице.

Таблица. Формы и методы контроля

Элемент	Формы и методы контроля			
общеобразовательной	Te	Текущий контроль		Промежуточная аттестация
дисциплины	Форма	Проверяемые ОК,	Форма	Проверяемые ОК, П, М
	контроля	предметные и	контроля	
		метапредметные		
Раздел 1. Повторение курса	математики основі	ной школы		
Тема 1.2. Числа и	Самостоятельная	MP 01, MP 02, MP 03, ПРб 01,	Экзамен	MP 01, MP 02, MP 03, ПРб 01, ПРб 02,
вычисления	работа	ПРб 02, ПРб 03, ПРб 04, ПРб		ПРб 03, ПРб 04, ПРб 05, ПРб 06, ПРб
		05, ПРб 06, ПРб 07, ПРб 08,		07, ПРб 08, ПРб 09, ПРб 10, ПРб 11,
		ПРб 09, ПРб 10, ПРб 11, ПРб		ПРб 12, ПРб 13, ПРб 14, ОК 1, ОК 2, ОК
		12, ПРб 13, ПРб 14, ОК 1, ОК 2,		3, OK 4, OK 5, OK 6, OK 7
		OK 3, OK 4, OK 5, OK 6, OK 7		, , , ,
Раздел 2. Степени и корни. С		ельная и логарифмическая фуні	кции	
Тема 2.1.	Самостоятельная	MP 01, MP 02, MP 03, ПРб 01,	Экзамен	MP 01, MP 02, MP 03, ПРб 01, ПРб 02,
Арифметический корень n-	работа	ПРб 02, ПРб 03, ПРб 04, ПРб		ПРб 03, ПРб 04, ПРб 05, ПРб 06, ПРб
ой степени.		05, ПРб 06, ПРб 07, ПРб 08,		07, ПРб 08, ПРб 09, ПРб 10, ПРб 11,
		ПРб 09, ПРб 10, ПРб 11, ПРб		ПРб 12, ПРб 13, ПРб 14, ОК 1, ОК 2, ОК
		12, ПРб 13, ПРб 14, ОК 1, ОК 2,		3, OK 4, OK 5, OK 6, OK 7
		OK 3, OK 4, OK 5, OK 6, OK 7		
Тема 2.7 Решение	Самостоятельная	ЛР 03, ЛР 09, МР 01, МР 02, МР	Экзамен	ЛР 03, ЛР 09, МР 01, МР 02, МР 03, ПРб
показательных уравнений и	работа	03, ПРб 01, ПРб 02, ПРб 03,		01, ПРб 02, ПРб 03, ПРб 04, ПРб 05,
неравенств		ПРб 04, ПРб 05, ПРб 06, ПРб		ПРб 06, ПРб 07, ПРб 08, ПРб 09, ПРб
		07, ПРб 08, ПРб 09, ПРб 10,		10, ПРб 11, ПРб 12, ПРб 13, ПРб 14, ОК
		ПРб 11, ПРб 12, ПРб 13, ПРб		1, OK 2, OK 3, OK 4, OK 5, OK 6, OK 7
		14, OK 1, OK 2, OK 3, OK 4, OK		
		5, OK 6, OK 7		

Тема 2.15 Применение	Самостоятельная	ЛР 03, ЛР 09, МР 01, МР 02, МР	Экзамен	ЛР 03, ЛР 09, МР 01, МР 02, МР 03, ПРб
логарифмов к решению задач	работа	03, ПРб 01, ПРб 02, ПРб 03,		01, ПРб 02, ПРб 03, ПРб 04, ПРб 05,
		ПРб 04, ПРб 05, ПРб 06, ПРб		ПРб 06, ПРб 07, ПРб 08, ПРб 09, ПРб
		07, ПРб 08, ПРб 09, ПРб 10,		10, ПРб 11, ПРб 12, ПРб 13, ПРб 14, ОК
		ПРб 11, ПРб 12, ПРб 13, ПРб		1, OK 2, OK 3, OK 4, OK 5, OK 6, OK 7
		14, OK 1, OK 2, OK 3, OK 4, OK		
		5, OK 6, OK 7		
Раздел 3 Прямые и плоскост	и в пространстве.	Координаты и векторы в простр	анстве	
Тема 3.4. Углы между	Самостоятельная	MP 01, MP 02, MP 03, ΠΡϬ 01,	Экзамен	MP 01, MP 02, MP 03, ПРб 01, ПРб 02,
прямыми и плоскостями	работа	ПРб 02, ПРб 03, ПРб 04, ПРб		ПРб 03, ПРб 04, ПРб 05, ПРб 06, ПРб
		05, ПРб 06, ПРб 07, ПРб 08,		07, ПРб 08, ПРб 09, ПРб 10, ПРб 11,
		ПРб 09, ПРб 10, ПРб 11, ПРб		ПРб 12, ПРб 13, ПРб 14, ОК 1, ОК 2, ОК
		12, ПРб 13, ПРб 14, ОК 1, ОК 2,		3, OK 4, OK 5, OK 6, OK 7
		OK 3, OK 4, OK 5, OK 6, OK 7		
Раздел 4. Координаты и вект	оры			
Тема 4.2.	Тест	MP 01, MP 02, MP 03, ΠΡб 01,	Экзамен	MP 01, MP 02, MP 03, ПРб 01, ПРб 02,
Координаты в пространстве.		ПРб 02, ПРб 03, ПРб 04, ПРб		ПРб 03, ПРб 04, ПРб 05, ПРб 06, ПРб
Простейшие задачи		05, ПРб 06, ПРб 07, ПРб 08,		07, ПРб 08, ПРб 09, ПРб 10, ПРб 11,
в координатах		ПРб 09, ПРб 10, ПРб 11, ПРб		ПРб 12, ПРб 13, ПРб 14, ОК 1, ОК 2, ОК
		12, ПРб 13, ПРб 14, ОК 1, ОК 2,		3, OK 4, OK 5, OK 6, OK 7
		OK 3, OK 4, OK 5, OK 6, OK 7		
Раздел 5. Основы тригономе	трии. Тригонометр	оические функции		
Тема 5.1. Основы	Самостоятельная	MP 01, MP 02, MP 03, ΠΡб 01,	Экзамен	MP 01, MP 02, MP 03, ПРб 01, ПРб 02,
тригонометрии	работа	ПРб 02, ПРб 03, ПРб 04, ПРб		ПРб 03, ПРб 04, ПРб 05, ПРб 06, ПРб
		05, ПРб 06, ПРб 07, ПРб 08,		07, ПРб 08, ПРб 09, ПРб 10, ПРб 11,
		ПРб 09, ПРб 10, ПРб 11, ПРб		ПРб 12, ПРб 13, ПРб 14, ОК 1, ОК 2, ОК
		12, ПРб 13, ПРб 14, ОК 1, ОК 2,		3, OK 4, OK 5, OK 6, OK 7
		OK 3, OK 4, OK 5, OK 6, OK 7		
Тема 5.8	Самостоятельная	MP 01, MP 02, MP 03, ΠΡб 01,	Экзамен	MP 01, MP 02, MP 03, ПРб 01, ПРб 02,
Тригонометрические	работа	ПРб 02, ПРб 03, ПРб 04, ПРб		ПРб 03, ПРб 04, ПРб 05, ПРб 06, ПРб
уравнения и неравенства		05, ПРб 06, ПРб 07, ПРб 08,		07, ПРб 08, ПРб 09, ПРб 10, ПРб 11,

			T	1
		ПРб 09, ПРб 10, ПРб 11, ПРб		ПРб 12, ПРб 13, ПРб 14, ОК 1, ОК 2, ОК
		12, ПРб 13, ПРб 14, ОК 1, ОК 2,		3, OK 4, OK 5, OK 6, OK 7
		OK 3, OK 4, OK 5, OK 6, OK 7		
Раздел 6. Производная и пері	вообразная функці	ии		
Тема 6.8 Исследование	Самостоятельная	MP 01, MP 02, MP 03, ПРб 01,	Экзамен	MP 01, MP 02, MP 03, ПРб 01, ПРб 02,
функций и построение	работа	ПРб 02, ПРб 03, ПРб 04, ПРб		ПРб 03, ПРб 04, ПРб 05, ПРб 06, ПРб
графиков		05, ПРб 06, ПРб 07, ПРб 08,		07, ПРб 08, ПРб 09, ПРб 10, ПРб 11,
		ПРб 09, ПРб 10, ПРб 11, ПРб		ПРб 12, ПРб 13, ПРб 14, ОК 1, ОК 2, ОК
		12, ПРб 13, ПРб 14, ОК 1, ОК 2,		3, OK 4, OK 5, OK 6, OK 7
		OK 3, OK 4, OK 5, OK 6, OK 7		
Раздел 7. Многогранники и т	ела вращения			
Тема 7.13 Понятие об объеме	Самостоятельная	MP 01, MP 02, MP 03, ΠΡ6 01,	Экзамен	MP 01, MP 02, MP 03, ПРб 01, ПРб 02,
тела. Объемы	работа	ПРб 02, ПРб 03, ПРб 04, ПРб		ПРб 03, ПРб 04, ПРб 05, ПРб 06, ПРб
многогранников и тел		05, ПРб 06, ПРб 07, ПРб 08,		07, ПРб 08, ПРб 09, ПРб 10, ПРб 11,
вращения		ПРб 09, ПРб 10, ПРб 11, ПРб		ПРб 12, ПРб 13, ПРб 14, ОК 1, ОК 2, ОК
		12, ПРб 13, ПРб 14, ОК 1, ОК 2,		3, OK 4, OK 5, OK 6, OK 7
		OK 3, OK 4, OK 5, OK 6, OK 7		
Раздел 8. Первообразная фун	кции, ее применен	не		
Тема 8.1 Первообразная	Темы докладов	ЛР 03, ЛР 09, МР 01,	Экзамен	ЛР 03, ЛР 09, МР 01, МР 02, МР 03, ПРб
функции		МР 02, МР 03, ПРб 01, ПРб 02,		01, ПРб 02, ПРб 03, ПРб 04, ПРб 05,
		ПРб 03, ПРб 04, ПРб 05, ПРб		ПРб 06, ПРб 07, ПРб 08, ПРб 09, ПРб
		06, ПРб 07, ПРб 08, ПРб 09,		10, ПРб 11, ПРб 12, ПРб 13, ПРб 14, ОК
		ПРб 10, ПРб 11, ПРб 12, ПРб		1, OK 2, OK 3, OK 4, OK 5, OK 6, OK 7
		13, ПРб 14, ОК 1, ОК 2, ОК 3,		
		OK 4, OK 5, OK 6, OK 7		
Раздел 9. Элементы комбина	торики, статистик		1	1
Тема 9.7 Решение задач	Темы докладов	MP 01, MP 02, MP 03, ПРб 01,	Экзамен	MP 01, MP 02, MP 03, ПРб 01, ПРб 02,
комбинаторики, статистики и		ПРб 02, ПРб 03, ПРб 04, ПРб		ПРб 03, ПРб 04, ПРб 05, ПРб 06, ПРб
теории вероятностей		05, ПРб 06, ПРб 07, ПРб 08,		07, ПРб 08, ПРб 09, ПРб 10, ПРб 11,
		Пре оо пре 10 пре 11 пре	1	ПРб 12, ПРб 13, ПРб 14, ОК 1, ОК 2, ОК
		ПРб 09, ПРб 10, ПРб 11, ПРб		11F0 12, 11F0 13, 11F0 14, OK 1, OK 2, OK

12, ПРб 13, ПРб 14, ОК 1, ОК 2,	
OK 3, OK 4, OK 5, OK 6, OK 7	

Оценка освоения общеобразовательной дисциплины ОУД.13 Математика

Аудиторная проверочная самостоятельная работа по теме 1.2 Числа и вычисления.

Вариант №1

- 1. Обратите обыкновенные дроби в десятичные периодические:

- 2. Обратите периодические дроби в обыкновенные:
- 1) 2, (3);
- 2) 1,0(8).
- 3. Площадь квадрата равна $588,67 \pm 0,11 \text{ см}^2$. Найти границы измерения площади квадрата.
- 4. Округлить с избытком 11,1231 до тысячных, сотых, десятых и единиц. Найти погрешность округления.
- **5***. Вычислите сумму $a = \sqrt{3} + \sqrt{7}$, взяв приближенные значения корней с точностью до 0,001; найдите ε_a . ($\sqrt{3} = 1,732$; $\sqrt{7} = 2,646$)
- **6***. Вычислите площадь параллелограмма, если a = 68.7 и h = 52.6. Укажите верные цифры ответа.
- 7*. Найдите границу абсолютной погрешности произведения двух приближенных значений чисел $a = 7.36 \pm 0.004$ и $b = 8.61 \pm 0.005$.

Вариант №2

- 1. Обратите обыкновенные дроби в десятичные периодические:
- 1) $\frac{4}{11}$; 2) $\frac{13}{15}$.
- 2. Обратите периодические дроби в обыкновенные:
- 1) 0, (6);
- 2) 3,5(8).
- **3.** Площадь квадрата равна $1483,08 \pm 0,12$ см². Найти границы измерения площади квадрата.
- 4. Округлить с недостатком 18,8874 до тысячных, сотых, десятых и единиц. Найти погрешность округления.
- **5***. Вычислите разность $a = \sqrt{11} \sqrt{7}$ с четырьмя значащими цифрами; найдите ε_a . $(\sqrt{11} = 3.317; \sqrt{7} = 2.646)$
- 6^* . Вычислите площадь прямоугольника, если a=78,6 и h=48,7. Укажите верные цифры
- **7***. Вычислите $X = \frac{a+b}{c}$, если a = 82.6; b = 93.8 и c = 61.9. Укажите границу абсолютной погрешности.

Аудиторная проверочная самостоятельная работа по теме 2.1. Арифметический корень пой степени

Вариант №1

- 1. Вычислите:
- 1) $\sqrt{\frac{1}{9}} + \sqrt[3]{-2\frac{10}{27}} + \sqrt[4]{256}$
- 2) $\sqrt[6]{3^7 \cdot 4^5} \cdot \sqrt[6]{3^5 \cdot 4}$
- 2. Вычислите
- 1) 2^{-3}
- $2)\left(\frac{2}{5}\right)^{-1}$
- 3) $32^{\frac{1}{5}} 81^{\frac{1}{4}}$ 4) $(2^{\frac{5}{3}} 1) \cdot (2^{\frac{10}{3}} + 2^{\frac{5}{3}} + 1)$

3. Найдите значение выражения

1)
$$\frac{x-1}{x+x^{\frac{1}{2}}+1}$$
 : $\frac{x^{0.5}+1}{x^{1.5}-1}$ + $\frac{2}{x^{-0.5}}$

2)
$$\frac{3(ab)^{\frac{1}{2}}-3b}{a-b} + \frac{\left(a^{\frac{1}{2}}-b^{\frac{1}{2}}\right)^{3}+2a^{\frac{3}{2}}+b^{\frac{3}{2}}}{a^{\frac{3}{2}}+b^{\frac{3}{2}}}$$

Вариант №2

1. Вычислите:

1)
$$\sqrt{0.64} + \sqrt[3]{-15\frac{5}{8}} + \sqrt[4]{81}$$

2)
$$\sqrt[5]{2^3 \cdot 7^2} \cdot \sqrt[5]{2^{12} \cdot 7^3}$$

2. Вычислите

1)
$$4^{-3}$$

$$2) \left(\frac{3}{7}\right)^{-1}$$

3)
$$16^{\frac{1}{4}} - 125^{\frac{1}{3}}$$

4)
$$\left(2+3^{\frac{2}{3}}\right)\cdot\left(4-2\cdot3^{\frac{2}{3}}+3^{\frac{4}{3}}\right)$$

3. Найдите значение выражения

$$1)\left(a^{\frac{1}{2}} \cdot b^{\frac{1}{2}} - \frac{ab}{a + a^{\frac{1}{2}}b^{\frac{1}{2}}}\right) : \frac{(ab)^{\frac{1}{4}} - b^{\frac{1}{2}}}{a - b}$$

2)
$$\frac{c-1}{c^{\frac{3}{4}}+c^{\frac{1}{2}}} \cdot \frac{c^{\frac{1}{2}}+c^{\frac{1}{4}}}{c^{\frac{1}{2}}+1} \cdot c^{\frac{1}{4}}+1$$

Вариант №3

1. Вычислите:

1)
$$\sqrt{\frac{1}{16}} + \sqrt[3]{-1\frac{61}{64}} + \sqrt[4]{625}$$

2)
$$\sqrt[8]{5^9 \cdot 9^7} \cdot \sqrt[8]{5^7 \cdot 9}$$

2. Вычислите

1)
$$3^{-2}$$

$$2)\left(\frac{1}{4}\right)^{-1}$$

3)
$$64^{\frac{1}{3}} - 49^{\frac{1}{2}}$$

4)
$$\left(3^{\frac{1}{3}} + 2^{\frac{2}{3}}\right) \cdot \left(3^{\frac{2}{3}} - 3^{\frac{1}{3}} \cdot 2^{\frac{2}{3}} + 2^{\frac{4}{3}}\right)$$

3. Найдите значение выражения

1)
$$\left(\frac{2x+x^{\frac{1}{2}}y^{\frac{1}{2}}}{3x}\right)^{-1} \cdot \left(\frac{x^{\frac{3}{2}}-y^{\frac{3}{2}}}{x-x^{\frac{1}{2}}y^{\frac{1}{2}}} - \frac{x-y}{x^{\frac{1}{2}}+y^{\frac{1}{2}}}\right)$$

$$2) \left(\frac{2\left(x^{\frac{1}{4}} - y^{\frac{1}{4}}\right)}{x^{-\frac{1}{2}}y^{-\frac{1}{4}} - x^{-\frac{1}{4}}y^{-\frac{1}{2}}} - x - y \right) : \frac{y - x}{x^{\frac{1}{2}} - y^{\frac{1}{2}}}$$

Вариант №4

1. Вычислите:

1)
$$\sqrt{0.81} + \sqrt[3]{-4\frac{12}{125}} + \sqrt[4]{16}$$

2)
$$\sqrt[4]{3^5 \cdot 7^3} \cdot \sqrt[4]{3^3 \cdot 7}$$

2. Вычислите

1)
$$4^{-2}$$

$$2) \left(\frac{1}{5}\right)^{-1}$$

3)
$$27^{\frac{1}{3}} - 25^{\frac{1}{2}}$$

4)
$$\left(1 - 2^{\frac{4}{3}}\right) \cdot \left(1 + 2^{\frac{4}{3}} + 2^{\frac{8}{3}}\right)$$

3. Найдите значение выражения

1)
$$\left(\frac{1-c^{-2}}{c^{\frac{1}{2}}-c^{-\frac{1}{2}}} - \frac{2c^{\frac{1}{2}}}{c^{2}} + \frac{c^{-2}-c}{c^{\frac{1}{2}}-c^{-\frac{1}{2}}}\right) \cdot \left(1 + \frac{2}{c^{2}}\right)^{-2}$$

$$2)\frac{a^{\frac{7}{3}-2}a^{\frac{5}{3}}b^{\frac{2}{3}}+ab^{\frac{4}{3}}}{a^{\frac{5}{3}-a}a^{\frac{4}{3}}b^{\frac{1}{3}-a}b^{\frac{2}{3}}+a^{\frac{2}{3}}b} \cdot a^{-\frac{1}{3}}$$

Аудиторная проверочная самостоятельная работа по теме 2.7 Решение показательных уравнений и неравенств

1 вариант

2 вариант

1. Изобразите схематически график функции:

$$y = 0.5^{x}$$

$$y = 1,5^{x}$$

2. Сравните числа:

а) 3
$$\sqrt{2}$$
 и 3 $\sqrt{3}$

а) 5
$$\sqrt{2}$$
 и 5 $\sqrt{3}$

б)
$$\left(\frac{1}{2}\right)^{-\sqrt{5}}$$
 и $\left(\frac{1}{2}\right)^{-\sqrt{3}}$

б)
$$\left(\frac{1}{3}\right)^{-\sqrt{5}}$$
 и $\left(\frac{1}{3}\right)^{-\sqrt{3}}$

3. Решите уравнения:

a)
$$27^{3x} = \frac{1}{3}$$

a)
$$\left(\frac{1}{25}\right)^{4x} = 5$$

6)
$$5^{2x+1} - 5^x = 4$$

$$6) 7^{2x+1} - 7^x = 0$$

4. Решить неравенство:

$$2.7^{x+4} \ge 2.7^{x}$$

$$0.3^{x+6x} \ge 0.3^{x}$$

5. Решить графически уравнение:

$$2x = -2x + 3$$

$$\left(\frac{1}{2}\right)^x = 2x + 3$$

Аудиторная проверочная самостоятельная работа по теме 2.15 Применение логарифмов к решению задач

Вариант №1

№1 Найдите область определения функции:

- 1) $\log_3(x + 8)$;
- 2) $\log_{x+4}(x-1)$.

№2 Прологарифмируйте выражение $X = a^3 b^4$ по основанию b.

№3 Найдите X, если $\lg x = \lg 3 + \lg 5 - \lg 2$.

№4 Вычислить:

- 1) $10^{3 \log 2 1}$;
- 2) $\log_{16} 0.5$; 3) $\frac{\log_2 64}{\log_2 \sqrt{16}}$.

№5 Решите уравнение:

- 1) $\log_{x-1}(x^2 7x + 41) = 2;$
- 2) $\lg x + \lg(x + 3) = 1$.

№6 Упростите выражение $\frac{a^{\frac{3}{3}}b-ab^{\frac{3}{3}}}{\sqrt[3]{a}-\sqrt[3]{b}}$.

Вариант №2

№1 Найдите область определения функции:

- 1) $\log_4(x-5)$;
- 2) $\log_{x+8}(x-10)$.

№2 Прологарифмируйте выражение $X = \frac{a^7}{c^3}$ по основанию *c*.

№3 Найдите X, если $\lg x = 2\lg 3 + 3\lg 2$.

№4 Вычислить:

1) $100^{\lg \sqrt{5}}$;

2) $\log_{64} \frac{1}{16}$; 3) $10^{2-3 \lg 5}$

№5 Решите уравнение:

1) $\log_{2-x}(2x^2 - 5x + 2) = 2$; 2) $\lg(x^2 - 17) - \lg(2x - 2) = 0$.

№6 Упростите выражение $\frac{m^{\frac{5}{2}}-n^{\frac{4}{2}}}{\sqrt{m}-\sqrt{n}}$.

Вариант №3

№1 Найдите область определения функции:

1) $\log_5(x+9)$;

2) $\log_{x-8}(x+4)$.

№2 Прологарифмируйте выражение $X = \frac{a^8 \cdot b^4}{c^5}$ по основанию b.

№3 Найдите X, если $\lg x = \lg 7 - \lg 3 + \lg 2$

№4 Вычислить:

1) $5^{-6\log_5 2}$;

2) $\log_{8} 16$; 3) $\frac{\lg 4}{\lg 64 - \lg 8}$.

№5 Решите уравнение:

1) $\log_x(2x^2 - 3x) = 1$;

 $2) \lg \left(\frac{1}{2} + x\right) = \lg \frac{1}{2} - \lg x.$

№6 Упростите выражение $\frac{m-n}{m^{\frac{1}{2}}-n^{\frac{1}{2}}} - \frac{\frac{3}{m^{\frac{3}{2}}-n^{\frac{3}{2}}}}{m-n}$.

Вариант №4

№1 Найдите область определения функции:

1) $\log_6(x+2)$;

2) $\log_{x}(x-2)$.

№2 Прологарифмируйте выражение $X = a^{-3}b^4\sqrt{ab}$ по основанию b.

№3 Найдите *X*, если $\lg x = \frac{1}{2} \lg 9 - \frac{2}{3} \lg 8$.

№4 Вычислить:

1) $36^{0.5-\log_6\sqrt{5}}$;

2) $\log_{0.09} \sqrt{0.027}$;

 $3) \frac{\lg 81}{\lg 9}$

№5 Решите уравнение:

1) $\log_{x+2}(3x^2 + x - 5) = 2;$

2) $\lg(x+4) - \lg(x-3) = \lg 8$.

№6 Упростите выражение $\frac{1-a^{-\frac{1}{2}}}{1+a^{\frac{1}{2}}} - \frac{a^{\frac{1}{2}}+a^{-\frac{1}{2}}}{a-1}$.

Аудиторная проверочная самостоятельная работа по теме 3.4 Углы между прямыми и плоскостями

<u> 1вариант</u>

- 1. Угол С треугольника АВС- прямой. АД- перпендикуляр к плоскости треугольника АВС. Докажите, что треугольник ВСД- прямоугольный.
- 2. АВСО- квадрат, диагонали которого пересекаются в точке Е. АН- перпендикуляр к плоскости квадрата. Докажите, что прямые HEи BD перпендикулярны.

- 3. Из вершины А квадрата ABCD со стороной 16 см восстановлен перпендикуляр AE длиной 12 см. докажите, что треугольник BCE- прямоугольный. Найдите его площадь.
- 4. Из центра О квадрата ABCD со стороной 18 см к его плоскости восстановлен перпендикуляр ОМ длиной 12 см. Найдите площадь треугольника ABM
- 5. Отрезок АМ перпендикулярен плоскости треугольника АВС и имеет длину 24 см. Найдите расстояние от точки М до прямой ВС, если АВ=АС=20 см., ВС=24 см.
- 6. В правильном треугольнике ABC точка О- центр. ОМ- перпендикуляр к плоскостиABC. Найдите расстояние от точки M до стороны AB, если AB=10см., ОМ=5см.

2вариант

- 1. Угол С треугольника MPC- прямой. MD- перпендикуляр к плоскости треугольника MPC. Докажите, что треугольник PCD- прямоугольный.
- 2. ABCD- квадрат, диагонали которого пересекаются в точке О. АН- перпендикуляр к плоскости квадрата. Докажите, что прямые НО и BD перпендикулярны.
- 3. Из вершины А квадрата ABCD со стороной 10 см восстановлен перпендикуляр АЕ длиной 16 см. докажите, что треугольник BCE- прямоугольный. Найдите его площадь.
- 4. Из центра О квадрата ABCD со стороной 8 см к его плоскости восстановлен перпендикуляр ОМ длиной 10 см. Найдите площадь треугольника ABM
- 5. Отрезок АМ перпендикулярен плоскости треугольника ABC и имеет длину 14 см. Найдите расстояние от точки М до прямой BC, если AB=AC=24 см., BC=20 см.
- 6. В правильном треугольнике ABC точка О- центр. ОМ- перпендикуляр к плоскостиABC. Найдите расстояние от точки M до стороны AB, если AB=12см., ОМ=6см.

Аудиторная проверочная самостоятельная работа по теме 4.2. Координаты в пространстве. Простейшие задачи в координатах

Вариант №1

$$\overrightarrow{a} \cdot \overrightarrow{b} < 0$$
. Тогда угол между векторами \overrightarrow{a} \overrightarrow{b} ...

- 1) острый;
- 2) тупой;
- 3) прямой.
- $2.\ DABC$ тетраэдр, AB=BC=AC=AD=BD=CD.

Тогда неверно, что...

$$(\overrightarrow{AB}; \overrightarrow{DC}) = 90^{\circ};$$

$$(\overrightarrow{BD}; \overrightarrow{CD}) = 60^{\circ};$$

$$_{3)}$$
 $\angle(\overrightarrow{AD}; \overrightarrow{BA}) = 60^{\circ}.$

3. Какое утверждение верное?

$$\overrightarrow{ab} = |\overrightarrow{a}| \cdot |\overrightarrow{b}| \cdot \cos (\overrightarrow{a}, \overrightarrow{b}).$$

$$\overrightarrow{a}\overrightarrow{b} = |\overrightarrow{a}| \cdot |\overrightarrow{b}| \cdot \sin (\overrightarrow{a}, \overrightarrow{b}).$$

3)
$$|\overrightarrow{a}| \cdot |\overrightarrow{b}| = \overrightarrow{a}\overrightarrow{b} \cdot \cos(\overrightarrow{a}, \overrightarrow{b}).$$

4. Скалярное произведение векторов
$$\vec{a}\{a_1;a_2;a_3\}_{\mathsf{H}}\vec{b}\{b_1;b_2;b_3\}_{\mathbf{\underline{paвнo}}...}$$

1)
$$a_1a_2a_3 + b_1b_2b_3$$
;

2)
$$a_1b_1 + a_2b_2 + a_3b_3$$
;

3)
$$a_1b_2b_3 + b_1a_2b_3 + b_1b_2a_3$$

Уровень В

1. Скалярное произведение векторов $\stackrel{\rightarrow}{a}\{-2;1;3\}$ и $\stackrel{\rightarrow}{b}\{-4;2;-1\}$ равно...

2.
$$\vec{a} \perp \vec{b}$$
, $\vec{a} \{1; -2; 4m\}$, $\vec{b} \{2; 2m+1; -m\}$. Тогда $m = ...$

3. В правильной четырёхугольной пирамиде *FABCD* все рёбра равны по 2 см.

 $_{\text{Тогда}} \vec{FA} \cdot \vec{AC} =$

4. Угол между векторами $\stackrel{\rightarrow}{j}_{\rm H}\stackrel{\rightarrow}{a}\left\{1;-1;\sqrt{2}\right\}$ равен...

5. Даны координаты точек:

$$A(1;-1;-4), B(-3;-1;0), C(-1;2;5), D(2;-3;1).$$

Тогда косинус угла между прямыми AB и CD равен...

Вариант №2

$$\vec{a} \cdot \vec{b} > 0$$
. Тогда угол между векторами \vec{b} и \vec{b} ...

- 1) острый;
- 2) тупой;
- 3) прямой.

2. $ABCA_1B_1C_1$ — призма, $\angle A_1AC = \angle A_1AB$, $AB = BC = AC = AA_1$. Тогда **верно**, что...

$$(\overrightarrow{CB}_1, \overrightarrow{CB}) = 90^{\circ};$$

$$(\overrightarrow{AA}_1, \overrightarrow{CB}) = 90^{\circ};$$

$$(\overrightarrow{AA_1}, \overrightarrow{CB}) = 90^\circ;$$

$$(\overrightarrow{AB}; \overrightarrow{CA}) = 60^{\circ}.$$

3. Какое утверждение верное?

$$\cos (\overrightarrow{a}, \overrightarrow{b}) = \frac{|\overrightarrow{a}| \cdot |\overrightarrow{b}|}{|\overrightarrow{a}|} \cdot (\overrightarrow{b}) = \frac{|\overrightarrow{a}| \cdot |\overrightarrow{b}|}{|\overrightarrow{a}| \cdot |\overrightarrow{b}|}.$$

$$\sin(\overrightarrow{a}, \overrightarrow{b}) = \frac{\overrightarrow{a} \overrightarrow{b}}{|\overrightarrow{a}| \cdot |\overrightarrow{b}|}.$$

4. Скалярное произведение векторов
$$\stackrel{\rightarrow}{m}\{m_1;m_2;m_3\}$$
 и $\stackrel{\rightarrow}{n}\{n_1;n_2;n_3\}$ равно...

1)
$$m_1n_1 + m_2n_2 + m_3n_3$$
;

2)
$$(n_1 - m_1)^2 + (n_2 - m_2)^2 + (n_3 - m_3)^2$$
;

3)
$$m_1m_2m_3 + n_1n_2n_3$$
.

Уровень В

1. Скалярное произведение векторов
$$\stackrel{\rightarrow}{a}\{3;7;-2\}$$
 и $\stackrel{\rightarrow}{b}\{-1;2;4\}$ равно...

$$\vec{a} \perp \vec{b}, \vec{a} \{n; -2; 1\}, \vec{b} \{n; 1; -n\}.$$
 Тогда $n = ...$

3. Все рёбра тетраэдра равны по 2 см. M, N, K, P – середины рёбер CD, BC, AB и BDсоответственно.

$$_{\text{Тогда}} \stackrel{\rightarrow}{N\!M} \cdot \stackrel{\rightarrow}{P\!K} = \dots$$

4. Угол между векторами
$$\stackrel{\rightarrow}{i}_{\rm M}\stackrel{\rightarrow}{a}\left\{1;-1;\sqrt{2}\right\}$$
 равен...

5. Даны координаты точек:

$$C(3; -2; 1), D(-1; 2; 1), M(2; -3; 3), N(-1; 1; -2).$$

Тогда косинус угла между прямыми CD и MN равен...

Аудиторная проверочная самостоятельная работа по теме 5.1 Основы тригонометрии Вариант №1

- **1.** Вычислить значения $\cos \alpha$, $\operatorname{tg} \alpha$ и $\operatorname{ctg} \alpha$, если $\sin \alpha = -0.6$, $\alpha \in \left(\pi; \frac{3\pi}{2}\right)$.
- **2.** Определить знак выражения: $\frac{\sin 205^{\circ} \cdot \cos 275^{\circ}}{\operatorname{tg} 200^{\circ} \cdot \operatorname{ctg} 105^{\circ}}$. **3.** Вычислить $\cos \left(\frac{\pi}{3} + \alpha \right)$, если $\sin \alpha = \frac{4}{5}, \frac{\pi}{2} < \alpha < \pi$.
- **4.** Упростить выражение: $\frac{\sin\frac{\pi}{10} \cdot \sin\frac{\pi}{5} + \cos\frac{\pi}{10} \cdot \cos\frac{\pi}{5}}{\sin\frac{\pi}{5} \cdot \sin\frac{2\pi}{15} \cos\frac{\pi}{5} \cdot \cos\frac{2\pi}{15}}$
- **5.** Доказать тождество: $\frac{\sin(\alpha-\beta)}{\lg \alpha-\lg \beta} = \cos \alpha \cdot \cos \beta$.

Вариант №2

- **1.** Вычислить значения $\sin \alpha$, $\operatorname{tg} \alpha$ и $\operatorname{ctg} \alpha$, если $\cos \alpha = -\frac{9}{41}$, $\alpha \in \left(\frac{\pi}{2}; \pi\right)$.
- **2.** Определить знак выражения: $\frac{\cos 175^{\circ} \cdot \cot 300^{\circ}}{\sin 297^{\circ} \cdot \tan 297^{\circ} \cdot \tan 297^{\circ}}$.
- 3. Вычислить $\cos\left(\frac{\pi}{4} \alpha\right)$, если $\cos\alpha = -\frac{1}{3}, \frac{\pi}{2} < \alpha < \pi$.

 4. Упростить выражение: $\frac{\sin\frac{\pi}{18} \cdot \cos\frac{\pi}{9} + \sin\frac{\pi}{9} \cdot \cos\frac{\pi}{18}}{\sin\frac{\pi}{36} \cdot \cos\frac{35\pi}{18} + \sin\frac{35\pi}{18} \cdot \cos\frac{\pi}{26}}$.

5. Доказать тождество:
$$\frac{\sin(\alpha+\beta)-2\sin\alpha\cdot\cos\beta}{2\sin\alpha\cdot\sin\beta+\cos(\alpha+\beta)}=\operatorname{tg}(\beta-\alpha).$$

Вариант №3

- **1.** Вычислить значения $\cos \alpha$, $\operatorname{tg} \alpha$ и $\operatorname{ctg} \alpha$, если $\sin \alpha = \frac{12}{13}$, $\alpha \in \left(\frac{\pi}{2}; \pi\right)$.
- **2.** Определить знак выражения: $\frac{\sin 310^{\circ} \cdot \cos^2 170^{\circ}}{\operatorname{tg} 190^{\circ} \cdot \operatorname{ctg} 92^{\circ}}$.
- 3. Вычислить $\cos\left(\frac{\pi}{3} \alpha\right)$, если $\sin\alpha = \frac{4}{5}, \frac{\pi}{2} < \alpha < \pi$.

 4. Упростить выражение: $\frac{\sin\frac{4\pi}{15}\cdot\cos\frac{\pi}{15} + \cos\frac{4\pi}{15}\cdot\sin\frac{\pi}{15}}{\cos\frac{2\pi}{5}\cdot\cos\frac{\pi}{15} + \sin\frac{2\pi}{5}\cdot\sin\frac{\pi}{15}}$.
- 5. Доказать тождество: $\cos \alpha \cos \left(\frac{\pi}{3} \alpha\right) \cos \left(\frac{\pi}{2} + \alpha\right) = 0$.

Вариант №4

- **1.** Вычислить значения $\cos \alpha$, $\operatorname{tg} \alpha$ и $\operatorname{ctg} \alpha$, если $\sin \alpha = -0.3$, $\alpha \in \left(\frac{3\pi}{2}; 2\pi\right)$.
- 2. Определить знак выражения: $\frac{\sin 235^{\circ} \cdot \cot 215^{\circ}}{\cot^2 95^{\circ} \cdot \cos^2 265^{\circ}}$.
 3. Вычислить $\cos \left(\frac{\pi}{4} + \alpha\right)$, если $\cos \alpha = -\frac{1}{3}, \frac{\pi}{2} < \alpha < \pi$.
- **4.** Упростить выражение: $\frac{tg_9^{\pi} + tg_{36}^{5\pi}}{1 tg_5^{\pi\pi} \cdot tg_7^{\pi}}$
- **5.** Доказать тождество: $\sin(\alpha + \beta) \cdot \cos(\alpha \beta) = \sin \alpha \cdot \cos \alpha + \sin \beta \cdot \cos \beta$.

Аудиторная проверочная самостоятельная работа по теме 5.8 Тригонометрические уравнения и неравенства

Вариант №1.

1. Решить уравнение: 1) $\sin x = \frac{\sqrt{2}}{2}$

2)
$$\cos x = -\frac{\sqrt{2}}{2}$$

3) $\sin 2x = \frac{1}{2}$

3)
$$\sin 2x = \frac{1}{2}$$

4)
$$2\sin^2 x + \sin x - 1 = 0$$

5)
$$2\cos^2 x + \sin x + 1 = 0$$

2. Решить неравенство: 1) $\sin x > \frac{1}{2}$

$$2)\cos 3x < -\frac{\sqrt{3}}{2}$$

3)
$$tg x > 1$$

$$4)\sin(2x-\frac{\pi}{4}) > \frac{\sqrt{2}}{2}$$

Вариант №2.

1. Решить уравнение: 1) $\cos x = \frac{1}{2}$

$$2)\sin x = -\frac{\sqrt{3}}{2}$$

$$3)\cos 2x = 1$$

4)
$$3\sin^2 x - 5\sin x - 2 = 0$$

5)
$$2\cos^2 x + 5\sin x - 4 = 0$$

2. Решить неравенство: 1) $\sin x < \frac{\sqrt{2}}{2}$

2)
$$\cos 2x > -\frac{1}{2}$$

3)
$$tg x < -1$$

4)
$$\cos(\frac{x}{4} + \frac{\pi}{3}) < -\frac{\sqrt{3}}{2}$$

Вариант №3.

1. Решить уравнение: 1) $\operatorname{tg} x = 1$

2)
$$\sin x = \frac{\sqrt{3}}{2}$$

3)
$$\sin \frac{x}{4} = -\frac{\sqrt{2}}{2}$$

4)
$$6\cos^2 x + \cos x - 1 = 0$$

5)
$$\sin^2 x - 2\cos x + 2 = 0$$

2. Решить неравенство: 1) $\cos x > -\frac{\sqrt{2}}{2}$

$$2)\sin\frac{x}{4} < \frac{\sqrt{3}}{2}$$

3)
$$tg x > \sqrt{3}$$

$$4)\sin(3x + \frac{\pi}{6}) > -\frac{1}{2}$$

Вариант №4.

1. Решить уравнение: 1) tg $x = -\frac{1}{\sqrt{3}}$

$$2)\cos x = 1$$

3)
$$\cos \frac{x}{4} = -\frac{\sqrt{3}}{2}$$

3)
$$\cos \frac{x}{4} = -\frac{\sqrt{3}}{2}$$

4) $4 \cos^2 x - 8 \cos x + 3 = 0$

$$5) 3\cos^2 x - \sin x + 1 = 0$$

2. Решить неравенство: 1) $\cos x < -\frac{1}{2}$

2)
$$\sin \frac{x}{3} > \frac{1}{2}$$

3)
$$tg x < -\sqrt{3}$$

4)
$$\cos(\frac{x}{2} - \frac{\pi}{2}) < -\frac{\sqrt{2}}{2}$$

Аудиторная проверочная самостоятельная работа по теме 6.8 Исследование функций и построение графиков

Вариант №1

№1. Исследовать и построить график:

1)
$$y = x^4 - 1$$
;

2)
$$y = 4x^3$$
;

Вариант №2

№1. Исследовать и построить график:

1)
$$y = 1 \ 3x^3 - x^2 - 3x + 9;$$

2)
$$y = x^2 - 2x - 3$$
;

Вариант №3

№1. Исследовать и построить график:

1)
$$y = 1 \cdot 4x^4 - 2x^2 + 7 \cdot 4$$
;

2)
$$y = x^3 - 4x$$
;

Вариант №4

№1. Исследовать и построить график:

1)
$$y = 1 \setminus 3x^3 + x^2 - 3x - 9$$
;

2)
$$y = x^2 + 2x - 3$$
;

Вариант №5

№1. Исследовать и построить график:

1)
$$y = -x^4 + 6x^2 - 9$$
;

$$(2)y = -4x^3 + 12x;$$

Вариант №6

№1. Исследовать и построить график:

1)
$$y = -x^4 + 4x^2 - 5$$
;

2)
$$y = -4x^3 + 8x$$
;

Аудиторная проверочная самостоятельная работа по теме 7.13 Понятие об объеме тела. Объемы многогранников и тел вращения

Вариант 1

- №1. Стороны треугольника равны 25, 39 и 56. Точка М удалена от каждой стороны этого треугольника на 25. Вычислить расстояние от точки М до плоскости треугольника.
- №2. В правильной четырехугольной пирамиде SABCD точка О центр основания, S вершина, SO=10, BD=48. Найдите боковое ребро SA.
- №3. В правильной четырехугольной пирамиде SABCD точка O центр основания, S вершина, SD=13, BD=10. Найдите длину отрезка SO.
- №4. В правильной четырехугольной пирамиде SABCD точка O центр основания, S вершина, SO=10, SC=26. Найдите длину отрезка AC.
- №5. Найдите объем конуса с диаметром 6 см и высотой 5 см.

Вариант 2

- №1. Катеты прямоугольного треугольника равны 15 и 20. Из вершины прямого угла к плоскости этого треугольника восставлен перпендикуляр длиной 35. Вычислить расстояние от концов этого перпендикуляра до гипотенузы.
- №2. В правильной четырехугольной пирамиде SABCD точка O центр основания, S вершина, SO=24, BD=20. Найдите боковое ребро SC.
- №3. В правильной четырехугольной пирамиде SABCD точка O центр основания, S вершина, SD=13, BD=24. Найдите длину отрезка SO.
- №4. В правильной четырехугольной пирамиде SABCD точка O центр основания, S вершина, SO=24, SA=26. Найдите длину отрезка AC.
- №5. Объем цилиндра равен 100π м³. Чему равен радиус основания, если высота равна 4 м?

Вариант 3

- №1. Стороны треугольника относятся как 9:10:11. Точка М удалена от плоскости треугольника на 7, а от каждой его стороны на 9. Вычислить стороны этого треугольника.
- №2. В правильной четырехугольной пирамиде SABCD точка O центр основания, S вершина, SO=7, AC=48. Найдите боковое ребро SB.
- №3. В правильной четырехугольной пирамиде SABCD точка O центр основания, S вершина, SC=15, AC=18. Найдите длину отрезка SO.
- №4. В правильной четырехугольной пирамиде SABCD точка O центр основания, S вершина, SO=7, SD=25. Найдите длину отрезка BD.
- №5. Найдите объем конуса с диаметром 8 см и высотой 3 см.

Вариант 4

- №1. Катеты прямоугольного треугольника ABC равны 12 и 16. Из вершины прямого угла C восставлен к плоскости треугольника перпендикуляр CM=28. Вычислить расстояние от точки M до гипотенузы.
- №2. В правильной четырехугольной пирамиде SABCD точка O центр основания, S вершина, SO=24, AC=14. Найдите боковое ребро SD.
- №3. В правильной четырехугольной пирамиде SABCD точка O центр основания, S вершина, SD=15, AC=24. Найдите длину отрезка SO.
- №4. В правильной четырехугольной пирамиде SABCD точка O центр основания, S вершина, SO=24, SC=25. Найдите длину отрезка BD.
- №5. Диагональ осевого сечения цилиндра равна 14 см и образует с основанием цилиндра угол равный 30 градусов. Найдите объем цилиндра.

Вариант 5

- №1. В параллелограмме ABCD стороны равны 15 и 50. В вершине В к плоскости параллелограмма восставлен перпендикуляр ВМ, равный 18. Вычислить расстояние от точки М до меньшей стороны параллелограмма, если точка М удалена от большей стороны на 30.
- №2. В правильной четырехугольной пирамиде SABCD точка O центр основания, S вершина, SO=15, AC=40. Найдите боковое ребро SD.
- №3. В правильной четырехугольной пирамиде SABCD точка O центр основания, S вершина, SD=17, AC=16. Найдите длину отрезка SO.

- №4. В правильной четырехугольной пирамиде SABCD точка O центр основания, S вершина, SO=15, SC=25. Найдите длину отрезка AC.
- №5. Образующая конуса равна 10см и составляет с плоскостью основания угол 30. Найдите объем конуса.

Вариант 6

- №1. Из вершины А прямоугольника ABCD, стороны которого AB=9, AD=8, восставлен к плоскости прямоугольника перпендикуляр AM=12. Вычислить расстояние от точки M до вершины прямоугольника.
- №2. В правильной четырехугольной пирамиде SABCD точка O центр основания, S вершина, SO=20, BD=30. Найдите боковое ребро SC.
- №3. В правильной четырехугольной пирамиде SABCD точка О центр основания, S вершина, SB=17, BD=30. Найдите длину отрезка SO.
- №4. В правильной четырехугольной пирамиде SABCD точка O центр основания, S вершина, SO=20, SD=25. Найдите длину отрезка AC.
- №5. Объем цилиндра равен 80π м³. Чему равна высота, если радиус основания равен 4 дм?

Тематика докладов по теме 8.1 Первообразная функции

- 1. Первообразная и интеграл.
- 2. Применение определенного интеграла для нахождения площади криволинейной трапеции, формула Ньютона-Лейбница.
- 3. Примеры применение интеграла в физике и геометрии.

Тематика докладов по теме 9.7 Решение задач комбинаторики, статистики и теории вероятностей

- 1. Основные понятия комбинаторики.
- 2. Задачи на подсчет числа размещений, перестановок, сочетаний.
- 3. Решение задач на перебор вариантов.
- 4. Формула бинома Ньютона, свойства биноминальных коэффициентов.
- 5. Треугольник Паскаля.
- 6. Событие, вероятность события, сложение и умножение вероятностей, понятие о независимости событий.
- 7. Дискретная случайная величина, закон ее распределения.
- 8. Числовые характеристики дискретной случайной величины.
- 9. Понятие о законе больших чисел.
- 10. Представление данных (таблицы, диаграммы, графики), генеральная совокупность, выборка, среднее арифметическое, медиана.
- 11. Понятие о задачах математической статистики, решение практических задач с применением вероятностных методов.

Критерии оценки освоения дисциплины на этапе подготовки докладов

Форма	Критерии оценки					
текущего	отпинно	Voncillo	удовлетворитель	неудовлетворите		
контроля	отлично	хорошо	НО	льно		
Доклад	Обучающийся	Допускаются	Раскрыты лишь	Обучающийся не		
по темам	самостоятельно изучил	отдельные	некоторые	раскрыл тему, не		
	литературные	ошибки, доклад	вопросы темы	ориентируется в		
	источники по теме,	недостаточно		материале		
	систематизировал	полно		исследования		
	материал и кратко его	раскрывает тему				
	изложил. Обучающийся					
	глубоко раскрыл тему.					

Комплект оценочных средств по формам промежуточного контроля

Методические указания по проведению экзамена/зачета/дифференцированного зачета. Место проведения: учебная аудитория.

Условия проведения: каждый студент должен работать индивидуально.

Использование вспомогательной литературы и подсказок не допускается.

Порядок проведения: рекомендуется на экзамен выносить 8 заданий общего уровня и два задания более высокого уровня сложности.

Перечень рекомендуемых вопросов для подготовки к экзамену

- 1. Выполнение действий над комплексными числами (умение выполнять действия над комплексными числами)
- 2. Вычисление вероятности события (умение использовать вероятностные и статистические модели)
- 3. Решение задач на нахождение координат вектора (умение вычислять координаты вектора, скалярное произведение векторов)
- 4. Решение задач с использованием механического смысла производной (владение механическим смыслом производной)
- 5. Построение графика функции (умение выполнять построение графика используя параллельный перенос)
- 6. Вычисление значений логарифмических выражений (умение выполнять тождественные преобразования логарифмических выражений и находить их значение)
- 7. Решение показательных неравенств (умение решать показательных неравенств)
- 8. Задача по стереометрии на тему «Многогранники и тела вращения» (умение решать задачи на вычисление геометрических величин)
- 9. Геометрическая задача (умение решать задачи на вычисление геометрических величин плоских многоугольников)
- 10. Решение тригонометрического уравнения с отбором корней (умение решать тригонометрические уравнения и выполнять отбор корней, принадлежащих заданному промежутку)

Форма примерного билета для проведения экзамена

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего образования «Российский экономический университет имени Г.В. Плеханова»

Краснодарский филиал РЭУ им. Г.В. Плеханова Отдел среднего профессионального образования

Рассмотрено предметно- цикловой комиссией цикла общеобразовательных дисциплин	Экзаменационный билет № 1 Дисциплина Математика	УТВЕРЖДАЮ:
Протокол №	Специальность 38.02.01 Экономика и	Начальник отдела СПО
от «»202 г.	бухгалтерский учет (по отраслям)	С.А. Марковская
Председатель ПЦК	38.02.08 Торговое дело	
/И.Ю. Лукинова/ (подпись) (расшифровка подписи)	43.02.15 Поварское и кондитерское дело	
№1. Найдите корни уравн $x^2 + 2x + 5 = 0$	ения:	
	и 15 девочек. Учитель случайным образом го у доски будет отвечать девочка?	м выбирает отвечающего у доски.
	введение двух векторов $\vec{a} = (6; 19; 14)$ и \vec{b}	
№4. Закон прямолинейного	движения тела задан уравнением $S(t)=rac{1}{4}$	$\frac{1}{4}t^4 + \frac{1}{3}t^3 - 5$. Найдите скорость и
ускорение в момент времен	ти t=3c, если S – путь (м), t – время (c).	-
№5. Построить график фу	инкции	
$y = \sqrt{x+2} - 3$		
№6. На йдите значение вы $64^{\log_8 9 + \frac{1}{2}}$	ражения:	
№7. Решите неравенство:		
$3^{x-4} > \left(\frac{1}{3}\right)^{-3}$		
	призмы лежит прямоугольный треугольн пи её высота равна 4.	ик, катеты которого равны 11 и 5
№9. В треугольнике АВС	$AC = BC$, $AB = 9.6$, $sin A = \frac{7}{25}$. Найдите .	AC.
№10. Решите уравнение:	23	
$3\sin^2\left(\frac{3\pi}{2}-x\right)-\cos(4\pi+$	x)=0	
Ведущие преподаватели		
-	(подпись)	(расшифровка подписи)

(подпись)

(расшифровка подписи)

Форма	Критерии оценки				
итогового	ОТИНИЦО	Vonotho	удовлетворитель	неудовлетвори	
контроля	ОТЛИЧНО	хорошо	НО	тельно	
Экзамен	Глубокое знание	Хорошее понимание	Плохое	Обучающийся	
	темы, 91-100%	темы, 90-71%	понимание темы,	не усвоил	
	правильно	правильно	70-51%	тему, менее	
	выполненных	выполненных	правильно	50% правильно	
	заданий	заданий	выполненных	выполненных	
			заданий	заданий	