Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Петровская Анна Викторовна

Приложение 6 Должность: Директор

к основной профессиональной образовательной программе Дата подписания: 22.09.2025 12:45:46

по направлению подготовки 38.03.01 Экономика

798bda6555fbdebe827768f6f1710bd17a9070c31fdc1b6a6ac5a1f10c8c5199 (профиль) программы Финансовая безопасность

Министерство науки и высшего образования Российской Федерации

федеральное государственное бюджетное образовательное учреждение высшего образования

«Российский экономический университет имени Г.В. Плеханова»

Факультет экономики, менеджмента и торговли

Кафедра бухгалтерского учета и анализа

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

по учебной дисциплине «ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА»

Направление подготовки 38.03.01 Экономика

Направленность (профиль) программы Финансовая безопасность

Уровень высшего образования *Бакалавриат*

Год начала подготовки 2022

Составитель:

Старший преподаватель КБУ

А.А. Маркушина

Оценочные материалы одобрены на заседании кафедры бухгалтерского учета и анализа, протокол от $30.08.2021~\text{N}\underline{\text{o}}~1$

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

по учебной дисциплине Теория вероятностей и математическая статистика

ПЕРЕЧЕНЬ КОМПЕТЕНЦИЙ С УКАЗАНИЕМ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ И ЭТАПОВ ИХ ФОРМИРОВАНИЯ ПО ДИСЦИПЛИНЕ

Формируемые компетенции (код и наименование компетенции)	Индикаторы достижения компетенций (код и наименование индикатора)	Результаты обучения (знания, умения)	Наименование контролируемых разделов и тем
ОПК-2. Способен осуществлять сбор, обработку и статистический анализ данных, необходимых для решения поставленных экономических задач	ОПК-2.2. Применяет статистические методы обработки собранных данных, использует анализ данных, необходимых для решения поставленных экономических задач.	ОПК-2.2. 3-1. Знает основы теории вероятностей, математической статистики и эконометрики: методы и формы организации статистического наблюдения, методологию первичной обработки статистической информации; типы экономических данных: временные ряды, перекрёстные (cross-section) данные, панельные данные; основы регрессионного анализа (линейная модель множественной регрессии); суть метода наименьших квадратов (МНК) и его применение в экономическом анализе; основные методы диагностики (проверки качества) эконометрических моделей. ОПК-2.2. У-1. Умеет проводить статистические тесты и строить	Тема 1. Основные понятия и теоремы теории вероятностей Тема 2. Случайные величины Тема 3. Основные законы распределения случайных величин Тема 4. Предельные теоремы теории вероятностей Тема 5. Многомерные случайные величины Тема 6. Основные понятия и методы математической статистики Тема 7. Оценка параметров распределений Тема 8. Проверка статистических гипотез

	доверительные	
	интервалы, определять	
	статистические	
	свойства полученных	
	оценок.	

МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ, ХАРАКТЕРИЗУЮЩИЕ ЭТАПЫ ФОРМИРОВАНИЯ КОМПЕТЕНЦИЙ

Перечень учебных заданий на аудиторных занятиях

Вопросы для проведения опроса на занятиях

Раздел 1. Теория вероятностей Тема 1. Основные понятия и теоремы теории вероятностей

Индикаторы достижения: ОПК-2.2.

Вопросы для проведения опроса:

- 1. Предмет и задачи теории вероятностей. Понятия испытания (опыта) и события.
- 2. Достоверные, невозможные, несовместные, противоположные, эквивалентные события.
- 3. Операции над событиями. Пространство элементарных событий.
- 4. Классическое определение вероятности. Основные свойства вероятности.
- 5. Комбинаторика: перестановки, размещения, сочетания и их основные свойства.
- 6. Теорема сложения вероятностей.
- 7. Условная вероятность. Теорема умножения вероятностей.
- 8. Понятие независимости событий. Вероятность появления хотя бы одного события.
- 9. Полная группа событий (гипотез).
- 10. Формула полной вероятности и её применение. Формула Байеса и её применение.
- 11. Формула Бернулли.

Критерии оценки (в баллах):

- 2 балла выставляется обучающемуся, если ответ на вопрос представлен в полном объеме без ошибок и недочетов;
- 1 балл выставляется обучающемуся, если ответ на вопрос представлен в полном объеме, при ответе допущены неточности;
- -0.5 балла выставляется обучающемуся, если ответ на вопрос представлен не в полном объеме, при ответе допущены незначительные ошибки;
- 0 баллов выставляется обучающемуся, если ответ на вопрос не представлен, или при ответе допущены грубые ошибки.

Тема 2. Случайные величины

Индикаторы достижения: ОПК-2.2.

Вопросы для проведения опроса:

- 1. Понятие случайной величины.
- 2. Закон распределения дискретной случайной величины.
- 3. Функция распределения случайной величины.

- 4. Математическое ожидание дискретной случайной величины.
- 5. Дисперсия дискретной случайной величины.
- 6. Среднее квадратическое отклонение дискретной случайной величины.

Критерии оценки (в баллах):

- 1 балл выставляется обучающемуся, если ответ на вопрос представлен в полном объеме без ошибок и недочетов;
- 0,5 балла выставляется обучающемуся, если ответ на вопрос представлен в полном объеме, при ответе допущены неточности;
- 0,2 балла выставляется обучающемуся, если ответ на вопрос представлен не в полном объеме, при ответе допущены незначительные ошибки;
- 0 баллов выставляется обучающемуся, если ответ на вопрос не представлен, или при ответе допущены грубые ошибки.

Тема 3. Основные законы распределения случайных величин

Индикаторы достижения: ОПК-2.2.

Вопросы для проведения опроса:

- 1. Случайные величины и их ФР.
- 2. Свойства ФР.
- 3. Дискретные СВ: ряд распределения.
- 4. Непрерывные СВ: плотность распределения.
- 5. Математическое ожидание СВ.
- 6. Дисперсия и среднее квадратическое отклонение СВ.

Критерии оценки (в баллах):

- 2 балла выставляется обучающемуся, если ответ на вопрос представлен в полном объеме без ошибок и недочетов;
- 1 балл выставляется обучающемуся, если ответ на вопрос представлен в полном объеме, при ответе допущены неточности;
- 0,5 балла выставляется обучающемуся, если ответ на вопрос представлен не в полном объеме, при ответе допущены незначительные ошибки;
- 0 баллов выставляется обучающемуся, если ответ на вопрос не представлен, или при ответе допущены грубые ошибки.

Тема 4. Предельные теоремы теории вероятностей

Индикаторы достижения: ОПК-2.2.

Вопросы для проведения опроса:

- 1.Закон больших чисел.
- 2. Теорема Бернулли.
- 3. Локальная предельная теорема Муавра-Лапласа и её применение.
- 4. Интегральная предельная теорема Муавра-Лапласа и её применение.

Критерии оценки (в баллах):

- 1 балл выставляется обучающемуся, если ответ на вопрос представлен в полном объеме без ошибок и недочетов;

- 0,5 балла выставляется обучающемуся, если ответ на вопрос представлен в полном объеме, при ответе допущены неточности;
- 0,2 балла выставляется обучающемуся, если ответ на вопрос представлен не в полном объеме, при ответе допущены незначительные ошибки;
- 0 баллов выставляется обучающемуся, если ответ на вопрос не представлен, или при ответе допущены грубые ошибки.

Тема 5. Многомерные случайные величины

Индикаторы достижения: ОПК-2.2.

Вопросы для проведения опроса:

- 1. Понятие многомерной СВ.
- 2. Двумерные СВ. ФР двумерной СВ и её свойства.
- 3. Плотность распределения и её свойства.
- 4. Условные законы распределения двумерной СВ.
- 5. Условные числовые характеристики СВ.

Критерии оценки (в баллах):

- 1 балл выставляется обучающемуся, если ответ на вопрос представлен в полном объеме без ошибок и недочетов;
- 0,5 балла выставляется обучающемуся, если ответ на вопрос представлен в полном объеме, при ответе допущены неточности;
- 0,2 балла выставляется обучающемуся, если ответ на вопрос представлен не в полном объеме, при ответе допущены незначительные ошибки;
- 0 баллов выставляется обучающемуся, если ответ на вопрос не представлен, или при ответе допущены грубые ошибки.

Раздел 2. Математическая статистика Тема 6. Основные понятия и методы математической статистики

Индикаторы достижения: ОПК-2.2.

Вопросы для проведения опроса:

- 1. Понятие генеральной совокупности, выборки, репрезентативности выборки.
- 2. Дискретный и интервальный вариационные ряды.
- 3. Частоты и относительные частоты.
- 4. Выборочная (эмпирическая) функция распределения.
- 5. Выборочные средняя, дисперсия, стандартное отклонение, ковариация, коэффициент корреляции.

Критерии оценки (в баллах):

- 1 балл выставляется обучающемуся, если ответ на вопрос представлен в полном объеме без ошибок и недочетов;
- 0,5 балла выставляется обучающемуся, если ответ на вопрос представлен в полном объеме, при ответе допущены неточности;
- 0,2 балла выставляется обучающемуся, если ответ на вопрос представлен не в полном объеме, при ответе допущены незначительные ошибки;
- 0 баллов выставляется обучающемуся, если ответ на вопрос не представлен, или при ответе допущены грубые ошибки.

Тема 7. Оценка параметров распределений

Индикаторы достижения: ОПК-2.2.

Вопросы для проведения опроса:

- 1. Понятие точечной оценки параметра распределения СВ.
- 2. Свойства оценок параметров СВ несмещённость, эффективность, состоятельность.
- 3. Понятие доверительной вероятности, доверительного интервала и интервальной оценки.

Критерии оценки (в баллах):

- 1 балл выставляется обучающемуся, если ответ на вопрос представлен в полном объеме без ошибок и недочетов;
- 0,5 балла выставляется обучающемуся, если ответ на вопрос представлен в полном объеме, при ответе допущены неточности;
- 0,2 балла выставляется обучающемуся, если ответ на вопрос представлен не в полном объеме, при ответе допущены незначительные ошибки;
- 0 баллов выставляется обучающемуся, если ответ на вопрос не представлен, или при ответе допущены грубые ошибки.

Тема 8. Проверка статистических гипотез

Индикаторы достижения: ОПК-2.2.

Вопросы для проведения опроса:

- 1. Основные понятия теории проверки статистических гипотез.
- 2. Основные этапы проверки статистических гипотез.
- 3. Проверка статистических гипотез о значении математического ожидания СВ, распределённой по нормальному закону.
- 4. Проверка статистических гипотез о значении дисперсии СВ, распределённой по нормальному закону.
- 5. Проверка статистических гипотез о равенстве дисперсий двух СВ, распределённых по нормальному закону.
- 6. Критерий согласия Пирсона.

Критерии оценки (в баллах):

- 1 балл выставляется обучающемуся, если ответ на вопрос представлен в полном объеме без ошибок и недочетов;
- 0,5 балла выставляется обучающемуся, если ответ на вопрос представлен в полном объеме, при ответе допущены неточности;
- 0,2 балла выставляется обучающемуся, если ответ на вопрос представлен не в полном объеме, при ответе допущены незначительные ошибки;
- 0 баллов выставляется обучающемуся, если ответ на вопрос не представлен, или при ответе допущены грубые ошибки.

Задания для текущего контроля

Расчетно-аналитические задания

Раздел 1. Теория вероятностей

Тема 1. Основные понятия и теоремы теории вероятностей

Индикаторы достижения: ОПК-2.2.

- 1. Среди поступающих на сборку деталей с I станка 0,1% бракованных, со II-0,2%; с III- 0,25%, с IV 0,5%. Производительности их относятся соответственно как 4:3:2:1. Взятая наудачу деталь оказалась стандартной. На каком станке вероятнее всего она изготовлена?
- 2. Игральную кость подбрасывают 10 раз. Найти вероятность того, что: а) шесть очков выпадет ровно 3 раза; б) шесть очков выпадет хотя бы один раз.
- 3. В семье 5 детей. Вероятность рождения мальчика считаем равным 1/2. Найти вероятность того, что в семье ровно три мальчика. Какое наиболее вероятное количество мальчиков в семье?
- 4. Для нормальной работы автобазы на линии должно быть не менее 8 автомашин, а их имеется 10. Вероятность того, что автомашина на линию не выйдет равна 0,1. Найти вероятность нормальной работы автобазы в ближайший день.
- 5. Какова вероятность того, что среди наугад 500 выбранных человек двое родились 8-го марта?

Критерии оценки (в баллах):

- 1 балл выставляется обучающемуся, если задание решено в полном объеме без ошибок и недочетов;
- 0,5 балла выставляется обучающемуся, если задание решено в полном объеме, при решении допущены неточности;
- 0,2 балла выставляется обучающемуся, если задание решено не в полном объеме, при решении допущены незначительные ошибки;
- 0 баллов выставляется обучающемуся, если задание не решено, или при решении допущены грубые ошибки.

Тема 2. Случайные величины

Индикаторы достижения: ОПК-2.2.

- 1. В денежной лотерее выпущено 100 билетов. Разыгрывается 2 выигрыша по 50 рублей и 30 выигрышей по 1 рублю. Найти закон распределения случайной величины X стоимости выигрыша для владельца одного лотерейного билета. Построить многоугольник распределения.
- 2. Найти математическое ожидание дискретной случайной величины X, заданной законом распределения:

X	-1	5
P	0,4	0,6

3. Найти числовые характеристики (математическое ожидание M(X), дисперсию D(X) и среднее квадратическое отклонение $\sigma(X)$) дискретной случайной величины X, заданной законом распределения:

X	-1	4
P	0,2	0,8

- 4. Для дискретной случайной величины X известно M(X) = 4, M(X 2) = 25. Найти её среднее квадратическое отклонение $\sigma(X)$.
- 5. В урне имеется 5 шаров с номерами от 1 до 5. Вынули 2 шара. Случайная величина X сумма номеров шаров. Найти закон распределения и числовые характеристики величины X.

Критерии оценки (в баллах):

- 1 балл выставляется обучающемуся, если задание решено в полном объеме без ошибок и недочетов;
- 0,5 балла выставляется обучающемуся, если задание решено в полном объеме, при решении допущены неточности;

- 0,2 балла выставляется обучающемуся, если задание решено не в полном объеме, при решении допущены незначительные ошибки;
- 0 баллов выставляется обучающемуся, если задание не решено, или при решении допущены грубые ошибки.

Тема 3. Основные законы распределения случайных величин

Индикаторы достижения: ОПК-2.2.

- 1. Найти вероятность того, что событие X наступит ровно 70 раз в 243 испытаниях, если вероятность появления этого события в каждом испытании равна 0,25.
- 2. Вероятность появления события в каждом из 100 независимых испытаний постоянна и равна 0,8. Найти вероятность того, что событие появится:
 - а) не менее 75 раз и не более 90 раз;
 - б) не менее 75 раз;
 - в) не более 74 раз.
- 3. Стрелок производит три выстрела в мишень. Вероятность попадания в цель при каждом выстреле одинакова и равна 0,8. Составить закон распределения случайной величины X число попаданий в цель при 3-х выстрелах. построить многоугольник распределения вероятностей.
- 4. В городе 4 коммерческих банка. У каждого риск банкротства в течение года составляет 20%. Составьте ряд распределения числа банков, которые могут обанкротиться в течение следующего года.
- 5. В партии 10% бракованных изделий. Наудачу отобрано 5 изделий. X число бракованных изделий среди отобранных. Дискретная случайная величина X распределена по биномиальному закону. Составить закон распределения случайной величины X. Записать функцию распределения, построить её график. Вычислить числовые характеристики M(X), D(X), $\sigma(X)$.

Критерии оценки (в баллах):

- 1 балл выставляется обучающемуся, если задание решено в полном объеме без ошибок и недочетов;
- 0,5 балла выставляется обучающемуся, если задание решено в полном объеме, при решении допущены неточности;
- 0,2 балла выставляется обучающемуся, если задание решено не в полном объеме, при решении допущены незначительные ошибки;
- 0 баллов выставляется обучающемуся, если задание не решено, или при решении допущены грубые ошибки.

Тема 4. Предельные теоремы теории вероятностей

Индикаторы достижения: ОПК-2.2.

- 1. Оценить вероятность того, что при 3600 независимых бросаниях кубика число появлений 6 очков будет не меньше 900 раз.
- 2. Устройство состоит из 10 независимо работающих элементов. Вероятность отказа каждого элемента равна 0, 05. Оценить вероятность того, что модуль разности между числом отказавших элементов и средним числом отказов окажется не меньше двух.
- 3. Оценить вероятность того, что частота появления шестерки в 10 000 независимых бросаниях кубика отклонится от вероятности появления шестерки по абсолютной величине меньше чем на 0,01.

- 4. Вероятность появления положительного результата в каждом из n опытов равна 0,8. Сколько нужно произвести опытов, чтобы с вероятностью 0,9 можно было ожидать, что не менее 75 опытов дадут положительный результат?
- 5. В очереди на получение денег в кассу стоят n=60 человек; размер выплаты каждому из них случаен. Средняя выплата равна 5000 руб., среднее квадратическое отклонение выплаты 2000 руб. Выплаты отдельным получателям независимы. Сколько должно быть денег в кассе, чтобы их с вероятностью 0,95 хватило на выплату всем 60 получателям? Каков будет гарантированный с той же вероятностью 0,95 остаток денег в кассе после выплаты всем 60 получателям, если в начале выплаты в кассе было 350 000 руб.?

Критерии оценки (в баллах):

- 2 балла выставляется обучающемуся, если задание решено в полном объеме без ошибок и недочетов;
- 1 балл выставляется обучающемуся, если задание решено в полном объеме, при решении допущены неточности;
- 0,5 балла выставляется обучающемуся, если задание решено не в полном объеме, при решении допущены незначительные ошибки;
- 0 баллов выставляется обучающемуся, если задание не решено, или при решении допущены грубые ошибки.

Тема 5. Многомерные случайные величины

Индикаторы достижения: ОПК-2.2.

1. Независимые случайные величины X, Y принимают только целые значения:

X — от 1 до 13 с равными вероятностями;

Y — от 1 до 16 с равными вероятностями.

Найти P(X+Y<6) — вероятность того, что в очередном испытании сумма появившихся чисел будет меньше шести.

2. Две независимые дискретные случайные величины X и Y заданы своими законами распределения вероятностей:

X	-2	1	4
P	0,2	0,3	0,5

X	-1	0	1	2	3
P	0,3	0,1	0,2	0,3	0,1

Найти закон распределения вероятностей системы (X,Y) и вычислить $P(x<0,y\geq 0),\ P(x\geq 1,-1< y<2),\ P(x\leq 4,y>2)$.

3. Двумерная случайная величина (X,Y) задана матрицей распределения вероятностей

X/Y	1	2	4
0	0,1	0	0,2
2	0	0,3	0
5	0,1	0,3	0

Найдите: ряды распределения X и Y; математические ожидания; дисперсии; ковариацию X и Y; коэффициент корреляции; условное математическое ожидание M[Y/X=2].

4. Дискретная случайная величина X задана законом распределения:

X	-1	0	1	2
P	0,2	0,1	0,3	0,4

Найти математическое ожидание, дисперсию и среднее квадратическое отклонение величины X.

Критерии оценки (в баллах):

- 1 балл выставляется обучающемуся, если задание решено в полном объеме без ошибок и недочетов;
- 0,5 балла выставляется обучающемуся, если задание решено в полном объеме, при решении допущены неточности;
- 0,2 балла выставляется обучающемуся, если задание решено не в полном объеме, при решении допущены незначительные ошибки;
- 0 баллов выставляется обучающемуся, если задание не решено, или при решении допущены грубые ошибки.

Раздел 2. Математическая статистика Тема 6. Основные понятия и методы математической статистики Индикаторы достижения: ОПК-2.2.

- 1. Из продукции, произведенной фармацевтической фабрикой за месяц, случайным образом отобраны 15 коробочек некоторого гомеопатического препарата, количество таблеток в которых оказалось равным соответственно 50, 51, 48, 52, 51, 50, 49, 50, 47, 50, 51, 49, 50, 52, 48. Представить эти данные в виде дискретного статистического ряда распределения, построить полигон частот, найти точечные и интервальную (с доверительной вероятностью, равной 0,95) оценки.
- 2. Пусть дана последовательность значения некоторого признака: 63, 77, 68, 77, 77, 71, 104, 102, 93, 83, 81, 72, 74, 74, 74, 79, 79, 82, 82, 84, 84, 85, 85, 84, 85, 87, 87, 86, 95, 86, 86, 88, 88, 88, 91, 91, 96, 96. Выполните статистическую обработку данных по следующей схеме: 1)выполнить ранжирование признака и составить безинтервальный вариационный ряд распределения; 2) составить интервальный вариационный ряд, разбив всю вариацию на k интервалов; 3) построить гистограмму распределения; 4) найти числовые характеристики выборочной совокупности.
- 3. Найти числовые характеристики выборки, заданной статистическим распределением частот:

Xi	2	6	12
n _i	3	10	7

4. Дана выборка, статистическое распределение частот которой имеет вид:

Xi	-1	0	1	3
n _i	3	2	1	4

Найти числовые характеристики выборки: выборочную среднюю, выборочную дисперсию, выборочное среднее квадратическое отклонение, моду, медиану, размах варьирования, коэффициент вариации.

5. Исследовать Вашу группу по возрасту: составить вариационный ряд и статистическое распределение частот и относительных частот; построить полигон частот; найти выборочную среднюю, выборочную дисперсию, выборочное среднее квадратическое отклонение, моду, медиану, размах варьирования, коэффициент вариации.

Критерии оценки (в баллах):

- 2 балла выставляется обучающемуся, если задание решено в полном объеме без ошибок и недочетов;
- 1 балл выставляется обучающемуся, если задание решено в полном объеме, при решении допущены неточности;
- 0,5 балла выставляется обучающемуся, если задание решено не в полном объеме, при решении допущены незначительные ошибки;
- 0 баллов выставляется обучающемуся, если задание не решено, или при решении допущены грубые ошибки.

Тема 7. Оценка параметров распределений

Индикаторы достижения: ОПК-2.2.

1. Из генеральной совокупности извлечена выборка объема n=60. Найти несмещенную оценку генеральной средней.

Xi	1	3	6	26
n _i	10	42	12	4

- 2. Проведено 5 измерений (без систематических ошибок) некоторой случайной величины: 8, 9, 10, 12, 13. Найти несмещенную оценку математического ожидания.
- 3. Для определения среднего процентного содержания белка в зернах пшеницы было отобрано 626 зерен, обследование которых показало, что выборочное среднее равно 16,8, а выборочная дисперсия равна 4. Чему равна с вероятностью 0,988 точность оценки выборки?
- 4.Известно, что продолжительность горения электрических лампочек подчиняется нормальному закону с математическим ожиданием равным 1000 часов и средним квадратическим отклонением 40 часов. Из большой партии ламп извлечена выборка объема n=64. Найти с надежностью $\gamma = 0,996$ доверительный интервал для средней продолжительности горения ламп всей партии.
- 5. При формировании для фирмы портфеля поставок был произведен случайный отбор 100 поставщиков, которые осуществляли поставки сырья в прошлом году. Для процента ω несвоевременно отгрузивших сырье поставщиков необходимо определить доверительные границы на уровне 0,997, если в выборке оказалось 25 таких поставщиков.

Критерии оценки (в баллах):

- 1 балл выставляется обучающемуся, если задание решено в полном объеме без ошибок и недочетов;
- -0.5 балла выставляется обучающемуся, если задание решено в полном объеме, при решении допущены неточности;
- 0,2 балла выставляется обучающемуся, если задание решено не в полном объеме, при решении допущены незначительные ошибки;
- 0 баллов выставляется обучающемуся, если задание не решено, или при решении допущены грубые ошибки.

Тема 8. Проверка статистических гипотез

Индикаторы достижения: ОПК-2.2.

- 1. Компания, производящая средства для потери веса, утверждает, что прием таблеток в сочетании со специальной диетой позволяет сбросить в среднем в неделю 400 г. веса. Случайным образом отобраны 25 человек, использующих эту терапию, и обнаружено, что в среднем еженедельная потеря в весе составила 430 г. со средним квадратическим отклонением 110 г. Проверьте гипотезу о том, что средняя потеря в весе составляет 400 г. Уровень значимости $\alpha = 0.05$.
- 2. Выборочные обследования показали, что доля покупателей, предпочитающих новую модификацию товара A, составляет 60% от общего числа покупателей данного товара. Каким должен быть объем выборки, чтобы можно было получить оценку генеральной доли с точностью не менее 0,05 при доверительной вероятности 0,90?
- 3. Производитель некоторого вида продукции утверждает, что 95% выпускаемой продукции не имеют дефектов. Случайная выборка сто изделий показала, что только 92 из них свободны от дефектов. Проверьте справедливость утверждения производителя продукции на уровне значимости $\alpha = 0.05$.
- 4. Найти выборочное уравнение прямой линии регрессии Y на X, если известны: выборочные средние 6,3 и 4, выборочные дисперсии Dx=04,0, Dy=25,0, выборочный коэффициент корреляции 6.

Критерии оценки (в баллах):

- 1 балл выставляется обучающемуся, если задание решено в полном объеме без ошибок и недочетов;
- 0,5 балла выставляется обучающемуся, если задание решено в полном объеме, при решении допущены неточности;
- 0,2 балла выставляется обучающемуся, если задание решено не в полном объеме, при решении допущены незначительные ошибки;
- 0 баллов выставляется обучающемуся, если задание не решено, или при решении допущены грубые ошибки.

Задания для творческого рейтинга

Темы для докладов

Индикаторы достижения: ОПК-2.2.

Раздел 1. Теория вероятностей

Тема 1. Основные понятия и теоремы теории вероятностей

Темы докладов (презентаций):

- 1. История зарождения теории вероятностей как науки. Основоположники.
- 2. Теория вероятностей: от первых теоретико-вероятностных представлений до аксиоматики А.Н.Колмогорова.

Тема 2. Случайные величины

Темы докладов (презентаций):

- 1. Математические методы в экономике.
- 2. Вероятностные методы в обработке информации.
- 3. Дисперсия и математическое ожидание случайной величины.

Тема 3. Основные законы распределения случайных величин

Темы докладов (презентаций):

- 1. Случайные величины.
- 2. Законы распределения случайных величин.
- 3. Числовые характеристики случайных величин.

Тема 4. Предельные теоремы теории вероятностей

Темы докладов (презентаций):

- 1. Закон больших чисел.
- 2. Закономерности массового процесса.
- 3. Закон больших чисел в общественных явлениях.
- 4. Бернулли. Его вклад в развитие теории вероятностей.

Тема 5. Многомерные случайные величины

Темы докладов (презентаций):

- 1. Распределение случайных величин.
- 2. Многомерные случайные величины.
- 3. Системы случайных величин.
- 4. Многомерные группировки в статистике
- 5. Графический метод в изучении коммерческой деятельности.

Раздел 2. Математическая статистика

Тема 6. Основные понятия и методы математической статистики

Темы докладов (презентаций):

- 1. Родоначальники формализованного описания экономики: А. Смит, Ф. Кенэ, А. Курно, К. Маркс, Л. Вальрас
- 2. Общее понятие о экономико-математических моделях: модели воспроизводства капитала.
- 3.Объективная неопределенность как результат самостоятельности и деловой активности экономических агентов.
- 4. Основные типы неопределенности в экономике: вероятностная, игровая рефлексивная.
- 5. Применение первичных и вторичных группировок в анализе данных статистического наблюдения.

Тема 7. Оценка параметров распределений

Темы докладов (презентаций):

- 1. Абсолютные величины, их виды, область применения.
- 2. Относительные величины, их виды, значение для анализа социальноэкономических явлений.
- 3. Средние величины в статистике, их значение, виды.
- 4. Применение структурных средних величин для анализа социально-экономических явлений.
- 5. Роль показателей вариации в оценке достоверности данных проведенных исследований.

Тема 8. Проверка статистических гипотез

Темы докладов (презентаций):

- 1. Построение многофакторных моделей. Методы и принципы отбора факторов.
- 2. Непараметрические методы оценки связи и их применение в практической деятельности.
- 3. Методы корреляционно-регрессивного анализа связи показателей коммерческой деятельности.
- 4. Основные положения теории корреляции.

Критерии оценки (в баллах):

- 10 баллов выставляется обучающемуся, если тема доклада раскрыта, приведены верные примеры, студент свободно ориентируется в теме доклада, отвечает на дополнительные вопросы;

- 7 баллов выставляется обучающемуся, если тема доклада раскрыта, приведены верные примеры, студент при ответе на дополнительные вопросы допускает неточности;
- 5 баллов выставляется обучающемуся, если тема доклада раскрыта, приведенные примеры не соответствуют теме, студент, отвечая на дополнительные вопросы, допускает ошибки;
- 0 баллов выставляется обучающемуся, если тема доклада не раскрыта, или при ответе на вопросы допущены грубые ошибки.

МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ, ХАРАКТЕРИЗУЮЩИЕ ЭТАПЫ ФОРМИРОВАНИЯ КОМПЕТЕНЦИЙ ВО ВРЕМЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

Структура зачетного задания

Наименование оценочного средства	Максимальное
	количество баллов
Bonpoc 1	10
Bonpoc 2	10
Практическое задание (расчетно-аналитическое)	10
Практическое задание (расчетно-аналитическое)	10

Задания, включаемые в зачетное задание

Перечень вопросов к зачету с оценкой:

Номер вопроса	Перечень вопросов к зачету с оценкой
1	Предмет и задачи теории вероятностей. Понятия испытания (опыта) и
	события. Достоверные, невозможные, несовместные, противоположные,
	эквивалентные события.
2	Операции над событиями.
3	Пространство элементарных событий.
4	Классическое определение вероятности. Основные свойства вероятности.
5	Комбинаторика: перестановки, размещения, сочетания и их основные свойства.
6	Теорема сложения вероятностей.
7	Условная вероятность. Теорема умножения вероятностей.
8	Понятие независимости событий.
9	Вероятность появления хотя бы одного события.
10	Полная группа событий (гипотез).
11	Формула полной вероятности и её применение.
12	Формула Байеса и её применение.
13	Формула Бернулли.
14	Случайные величины и их ФР. Свойства ФР.
15	Дискретные СВ: ряд распределения.
16	Непрерывные СВ: плотность распределения и её свойства.
17	Математическое ожидание СВ и его свойства.

18	Дисперсия и среднее квадратическое отклонение СВ и их свойства.
19	Мода, медиана, начальные и центральные моменты СВ.
20	Квантиль и ее частные значения – квартили, децили и процентили.
21	Биномиальное распределение.
22	Распределение Пуассона.
23	Равномерное распределение.
24	Показательное распределение.
25	Функция Лапласа и её свойства.
26	Нормальное распределение и его основные свойства. Правило «трёх сигма».
27	Распределения Пирсона, Стьюдента, Фишера.
28	Закон больших чисел. Неравенство Чебышева.
29	Центральная предельная теорема. Теорема Бернулли.
30	Локальная предельная теорема Муавра-Лапласа и её применение.
31	Интегральная предельная теорема Муавра-Лапласа и её применение.
32	Понятие многомерной СВ. Двумерные СВ.
33	ФР двумерной СВ и её свойства.
34	Непрерывные двумерные СВ. Плотность распределения и её свойства.
35	Условные законы распределения компонентов двумерной СВ.
36	Условные числовые характеристики СВ.
37	Независимые СВ.
38	Ковариация и коэффициент корреляции.
39	Предмет и задачи математической статистики. Понятие генеральной
	совокупности, выборки, репрезентативности выборки.
40	Дискретный и интервальный вариационные ряды. Частоты и относительные
-0	частоты.
41	Многоугольник (полигон) распределения и гистограмма.
42	Выборочная (эмпирическая) функция распределения.
43	Функции выборки. Выборочные средняя, дисперсия, стандартное
	отклонение, ковариация, коэффициент корреляции.
44	Понятие точечной оценки параметра распределения СВ.
45	Свойства оценок параметров СВ – несмещённость, эффективность,
	состоятельность.
46	Метод максимального правдоподобия.
47	Примеры точечных оценок.
48	Понятие доверительной вероятности, доверительного интервала и
	интервальной оценки.
49	Построение интервальной оценки для МО СВ, распределённой по НЗ с
	известным СКО.
50	Построение интервальной оценки для МО СВ, распределённой по НЗ с
	неизвестным СКО.
51	Построение интервальной оценки для СКО СВ, распределённой по НЗ.
52	Основные понятия теории проверки статистических гипотез.
53	Основные этапы проверки СГ.
54	Проверка СГ о значении МО СВ, распределённой по НЗ с известным СКО.
55	Проверка СГ о значении МО СВ, распределённой по НЗ с неизвестным СКО.
56	Проверка СГ о значении дисперсии СВ, распределённой по НЗ.
57	Проверка СГ о равенстве МО двух СВ, распределённых по НЗ.
58	Проверка СГ о равенстве дисперсий двух СВ, распределённых по НЗ.
59	Критерий согласия Пирсона.
60	Непараметрические методы проверки гипотез.

Расчетно-аналитические задания/задачи:

Тема 1. Основные понятия и теоремы теории вероятностей

- 1. В поступивших на склад 3 партиях деталей годные составляют 89 %, 92 % и 97 % соответственно. Количество деталей в партиях относится как 1:2:3. Чему равна вероятность того, что случайно выбранная со склада деталь окажется бракованной. Пусть известно, что случайно выбранная деталь оказалось бракованной. Найти вероятности того, что она принадлежит первой, второй и третьей партиям.
- 2. В первой урне 10 шаров : 4 белых и 6 чёрных. Во второй урне 20 шаров : 2 белых и 18 чёрных. Из каждой урны выбирают случайным образом по одному шару и кладут в третью урну. Затем из третьей урны случайным образом выбирают один шар. Найти вероятность того, что извлечённый из третьей урны шар будет белым.
- 3. При переливании крови надо учитывать группы крови донора и больного. Человеку, имеющему четвёртую группу крови можно перелить кровь любой группы, человеку со второй и третьей группой можно перелить либо кровь его группы, либо первой. Человеку с первой группой крови можно перелить кровь только первой группы. Известно, что среди населения 33,7 % имеют первую группу, 37,5 % имеют вторую группу, 20,9 % имеют третью группу и 7,9 % имеют 4 группу. Найти вероятность того, что случайно взятому больному можно перелить кровь случайно взятого донора.
- 4. Вероятность искажения одного символа при передаче сообщения по линии связи равна 0.001. Сообщение считают принятым, если в нём отсутствуют искажения. Найти вероятность того, что будет принято сообщение, состоящее из 20 слов по 100 символов каждое.

Тема 2. Случайные величины

- 1. Игрок выигрывает очко, если при подбрасывании монеты выпадает герб, и проигрывает очко в противном случае. Построить график функции распределения суммарного выигрыша игрока после двух бросаний монеты.
- 2. Среди поступивших в ремонт 10 часов 6 шт. нуждаются в общей чистке механизма. Часы не рассортированы по виду ремонта. Мастер, желая найти часы, нуждающиеся в общей чистке механизма, рассматривает их поочередно и, найдя первые из таких часов, прекращает дальнейший просмотр. Найти математическое ожидание СВ количества просмотренных часов
- 3. Партия, насчитывающая 100 изделий, содержит 10 дефектных. Из всей партии случайным образом отбираются с целью проверки качества 5 изделий. Найти математическое ожидание числа дефектных изделий, содержащихся в случайной выборке.

Тема 3. Основные законы распределения случайных величин

- 1. Найти плотность вероятности суммы трех независимых случайных величин, имеющих распределение Пуассона.
- 2. По мишени производится один выстрел. Вероятность попадания равна 0,7. Рассмотрим две СВ: ξ число попаданий, η число промахов. Найти закон распределения двумерной случайной величины (ξ , η).
- 3. Найти математическое ожидание и дисперсию: а) числа очков, выпадающих при бросании одной игральной кости; б) суммы очков, выпадающих при бросании п игральных костей.

Тема 4. Предельные теоремы теории вероятностей

- 1. Вероятность изготовления нестандартной детали равна p = 0,004. Какова вероятность того, что среди 1000 деталей окажется 5 нестандартных?
- 2. Вероятность рождения мальчика 0,51. Найдем вероятность, что среди 200 новорожденных будет 95 девочек.
- 3. Пусть вероятность того, что покупательнице магазина женской обуви необходима обувь 36-го размера, равна 0,3. Найдем вероятность того, что из 2000 покупательниц таких будет от 570 до 630.
- 4. В автобусном парке 100 автобусов. Известно, что вероятность выхода из строя мотора в течение дня равна 0,1. Чему равна вероятность того, что в определенный день окажутся неисправными моторы у 12 автобусов?
- 5. Завод выпускает в среднем 99,8% доброкачественных и 0,2% бракованных изделий. Какова вероятность того, что среди выбранных наугад 500 изделий число бракованных будет больше трех?

Тема 5. Многомерные случайные величины

- 1. Студенту даются 3 попытки пересдать экзамен. Вероятность, что студент сдаст экзамен с первой попытки равна 0,4, со второй 0,6, с третьей -0,8. Составить закон распределения случайной величины числа попыток сдать экзамен, функцию распределения, построить ее график. Найти M(X), D(X), $\sigma(X)$.
- 2. Случайная величина задана плотностью распределения. Найти: параметр b, M(x), D(x), F(x), вероятность того, что случайная величина принимает значения на промежутке [1,5;4,5].

$$\begin{cases} 0, & x < 1, \\ \frac{1}{4}, & 1 \le x \le b, \\ 0, & x > b. \end{cases}$$

3. Случайная величина задана функцией распределения F(x). 1) найти плотность распределения вероятностей f(x); 2) построить графики функций f(x) и F(x); 3) найти M(x), D(x) и среднеквадратическое отклонение случайной величины X; 4) найти вероятность того, что X примет значение из интервала (1;3).

$$F[x]=i[0, x \le 2, i[x-2]^2, 2 \le x \le 3, iiii$$

Тема 6. Основные понятия и методы математической статистики

- 1. Дана выборка (4; 6; 0; 2; 1; 3; 3; 1; 2; 5; 3; 1; 2; 2; 4; 4; 4; 3; 2; 5; 2; 5; 1; 2; 3; 0). Построить: 1) дискретный вариационный ряд; 2) полигон относительных частот; 3) эмпирическую функцию распределения.
- 2. Имеются данные о торгах акций некоторого акционерного общества на фондовой бирже. Количество проданных акций по курсу продаж распределилось следующим образом:

Курс продаж	900	990	1010	1015	1150
Количество проданных акций	550	650	800	700	850

Найдем оценки среднего и дисперсии курса продаж акции.

3. Дана выборка (9; 5; 5; 7; 5; 7; 3; 5; 9; 7; 3; 2; 5; 2; 5; 1; 2; 3; 0; 3; 0; 5; 1; 2; 1). Построить дискретный вариационный ряд. Найти выборочные среднюю и дисперсию.

Тема 7. Оценка параметров распределений

- 1. 25 рабочих контролировались в течение месяца по признаку процент выполнения норм выработки за месяц. По выборочным данным были рассчитаны x = 102,3% средний процент выработки и дисперсия $S^2 = 16$. Найти 95%-ный доверительный интервал для генеральной средней, если известно, что признак имеет нормальное распределение.
- 2. Недельные доходы фирмы подчинены нормальному закону распределения. По 25 еженедельным наблюдениям за доходами фирмы найдено $S^2=1200$. Найдите 95%-ный доверительный интервал для дисперсии недельных доходов.
- 3. По предварительному опросу населения большого города, в котором участвовало 900 жителей, за мероприятие X готовы проголосовать 400 человек из опро- шенных жителей. Найти 90%-ный доверительный интервал, в котором находится истинный процент готовых проголосовать за мероприятие X.
- 4. Среди 400 деталей, изготовленных станком-автоматом, 20 оказалось нестандартных. Найдите доверительный интервал, покрывающий с надежностью 0,98 неизвестную вероятность брака.

Тема 8. Проверка статистических гипотез

1. Физическая подготовка 9 спортсменов была проведена при поступлении в спортивную школу, а затем после недели тренировок. Итоги проверки в баллах оказались следующими:

x_i	76	71	57	49	70	69	26	65	59
y_t	81	85	52	52	70	63	33	83	62

(в 1-й строке число баллов при поступлении, во 2-й – после недели тренировок)

Требуется на уровне значимости 0,05 установить, значимо или незначимо улучшилась физическая подготовка спортсменов, в предположении, что число баллов распределено нормально.

n=7 m=5 2. Некоторая физическая величина измерена и раз двумя различными способами. По результатам измерений найдены соответствующие $s_x^2=6.3, s_y^2=10.1$

погрешности . Требуется на уровне значимости 0,05 проверить, одинаковую ли точность обеспечивают эти способы измерений.

3. В результате длительных наблюдений установлено, что вероятность полного выздоровления больного, принимавшего лекарство A , равна 0,8. Новое лекарство назначено 800 больным, причём 660 из них полностью выздоровели. Можно ли считать новое лекарство значимо эффективнее лекарства A на пятипроцентном уровне значимости?

Тематика курсовых работ/проектов (при наличии):

Курсовая работа по дисциплине «Теория вероятностей и математическая статистика» учебным планом не предусмотрена.

Показатели и критерии оценивания планируемых результатов освоения компетенций и результатов обучения, шкала оценивания

Шка	ала оценивания	Формируемые компетенции	Индикатор достижения компетенции	Критерии оценивания	Уровень освоения компетенций
85 — 100 балло в	ала оценивания «отлично»/ «зачтено»	компетенции ОПК-2. Способен осуществлять сбор, обработку и статистически й анализ данных, необходимых для решения	достижения компетенции ОПК-2.2. Применяет статистические методы обработки собранных данных, использует анализ данных дяя решения поставленных	оценивания Знает верно и в полном объеме: основы теории вероятностей, математической статистики и эконометрики: методы и формы организации статистического наблюдения, методологию	Компетенций Продвинутый
				х моделей. Умеет верно и в полном объеме: проводить статистические тесты и строить доверительные	

интервалы, определять статистические	
ототнотинасина	
свойства	
полученных	
оценок.	
70 – «хорошо»/ ОПК-2. ОПК-2.2. Знает с По	овышенный
84 «зачтено» Способен Применяет незначительными	
осуществлять статистические замечаниями:	
сбор метолы основы теории	
обработку иобработки вероятностей,	
статистически собранных	
й анализданных, статистики и	
эконометрики:	
данных, использует методы и формы	
необходимых анализ данных, организации	
для решениянеооходимых статистического	
поставленных для решения наблюдения	
ЭКОНОМИЧЕСКИ ПОСТАВЛЕННЫХ МЕТОЛОЛОГИЮ	
х задач экономических первичной	
задач. обработки	
статистической	
информации;	
типы	
экономических	
данных:	
временные ряды,	
перекрёстные	
(cross-section)	
данные,	
панельные	
данные; основы	
регрессионного	
анализа	
(линейная модель	
множественной	
регрессии); суть	
метода	
наименьших	
квадратов (МНК)	
и его применение	
в экономическом	
анализе;	
основные методы	
диагностики	
(проверки	
качества)	
эконометрически у моделей	
х моделей.	
Умеет с	
незначительными	
замечаниями:	

	I	<u> </u>	T .		
				проводить	
				статистические	
				тесты и строить	
				доверительные	
				интервалы,	
				определять	
				статистические	
				свойства	
				полученных	
50		OHII 2	OFFIC 2.2	оценок.	Γ
50 – 69	«удовлетворительно»/ «зачтено»		ОПК-2.2.	Знает на базовом уровне, с	Базовый
балло	"Sa T Cho"		Применяет	ошибками: основы	
В		-	статистические	теории	
		* '	методы	-	
		*	обработки	вероятностей,	
		статистически	собранных	математической	
		й анализ	данных,	статистики и	
		данных,	использует	эконометрики:	
		необходимых	анализ данных,	методы и формы	
		для решения	необходимых	организации	
		поставленных	для решения	статистического	
			поставленных	наблюдения,	
			экономических	методологию	
			задач.	первичной	
			зиди 1.	обработки	
				статистической	
				информации;	
				типы	
				экономических	
				данных:	
				временные ряды,	
				перекрёстные	
				(cross-section)	
				данные,	
				панельные	
				данные; основы	
				регрессионного	
				анализа	
				(линейная модель	
				множественной	
				регрессии); суть	
				метода	
				наименьших	
				квадратов (МНК)	
				и его применение	
				в экономическом	
				анализе;	
				основные методы	
				диагностики	
				(проверки	
				качества)	
				эконометрически	
	<u> </u>	1	I .	PROTTOMOTPH TORKI	

				х моделей.	
				Умеет на базовом	
				уровне, с	
				ошибками:	
				проводить	
				статистические	
				тесты и строить	
				_	
				доверительные	
				интервалы,	
				определять	
				статистические	
				свойства	
				полученных	
				оценок.	
менее	«неудовлетворительно	ОПК-2.	ОПК-2.2.	Не знает на базовом	Компетенции не
50	«неудовлетворительно »/				сформированы
балло	(/***		P-1111-1212-1	уровне: основы	- Գոհասհորայու
В			статистические		
		сбор,	методы	вероятностей,	
		обработку и	обработки	математической	
		статистически		статистики и	
			данных,	эконометрики:	
			использует	методы и формы	
			анализ данных,	статистического	
		_			
		поставленных		наблюдения,	
		экономически		методологию	
		х задач	экономических	первичной	
			задач.	обработки	
				статистической	
				информации;	
				типы	
				экономических	
				данных:	
				['	
				временные ряды,	
				перекрёстные	
				(cross-section)	
				данные,	
				панельные	
				данные; основы	
				регрессионного	
				анализа	
				(линейная модель	
				множественной	
				регрессии); суть	
				метода	
				наименьших	
				квадратов (МНК)	
				и его применение	
				в экономическом	
				анализе;	
				основные методы	
				диагностики	

/
(проверки
качества)
эконометрически
х моделей.
Не умеет на базовом
уровне: проводить
статистические
тесты и строить
доверительные
интервалы,
определять
статистические
свойства
полученных
оценок.