Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Петровская Анна Викторовна

Должность: Директор

Приложение 6

Дата подписания: 29.08.2025 14:38:26 Уникальный программный ключ:

к основной профессиональной образовательной программе по направлению подготовки 09.03.03 Прикладная информатика 798bda6555fbdebe827768f6f1710bd17a9070**даправденность** (профиль) программы «Прикладная информатика

в экономикс»

Министерство науки и высшего образования Российской Федерации

федеральное государственное бюджетное образовательное учреждение высшего образования

«Российский экономический университет имени Г.В. Плеханова»

Краснодарский филиал РЭУ имени Г.В. Плеханова

Факультет экономики, менеджмента и торговли Кафедра экономики и цифровых технологий

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

по дисциплине Теория вероятностей и математическая статистика

Направление подготовки

09.03.03 Прикладная информатика

Направленность (профиль) программы Прикладная информатика в экономике

Уровень высшего образования

Бакалавриат

Год начала подготовки 2024

Составитель:

Доцент кафедры экономики и цифровых технологий, к.э.н. Пантелеева О.Б.

Оценочные материалы одобрены на заседании кафедры экономики и цифровых технологий Краснодарского филиала РЭУ им. Г.В. Плеханова протокол № 9 от 14 марта 2024 г.

Оценочные материалы составлены на основе оценочных материалов по дисциплине «Теория вероятностей и математическая статистика», утвержденной на заседании кафедры высшей математики федерального государственного бюджетного образовательного учреждения высшего образования «Российский экономический университета имени Г.В. Плеханова» протокол № 10 от 27 мая 2021 г., разработанной авторами:

Маслякова И.Н., доцент кафедры высшей математики

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

по дисциплине Теория вероятностей и математическая статистика

ПЕРЕЧЕНЬ КОМПЕТЕНЦИЙ С УКАЗАНИЕМ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ И ЭТАПОВ ИХ ФОРМИРОВАНИЯ ПО

Формируемые компетенции	Индикаторы достижения	Результаты обучения (знания, умения)	Наименование контролируемых
(код и наименование	компетенций		разделов и тем
компетенции)	(код и наименование		
	индикатора)		
ОПК-1. Способен	ОПК-1.1.	ОПК-1.1. 3-3. Знает	Тема 1. Теория
применять	Формализует	основные статистические	случайных событий.
естественнонаучные	стандартные	процедуры при обработке	Тема 2. Схема
и общеинженерные	профессиональные	данных и алгоритмы	испытаний Бернулли.
знания, методы	задачи с	проверки статистических	Тема 3. Случайные
математического	применением	гипотез	величины.
анализа и	естественнонаучных	OFFICAL AND AN	Тема 4. Предельные
моделирования,	и общеинженерных	ОПК-1.1. У-1. Умеет	теоремы.
теоретического и	знаний, методов	осуществлять сбор,	Тема 5. Основные
экспериментального	математического	систематизацию,	статистические понятия
исследования в	анализа и	формализацию,	и статистические оценки. Тема 6. Доверительное
профессиональной деятельности	моделирования	интерпретацию, первичную обработку и анализ данных	оценивание и критерии
деятельности			проверки гипотез для
		для исследования	параметров нормального
		конкретных экономических ситуаций, используя методы	закона.
		математического,	Sakona.
		статистического,	
		экономического анализа и	
		моделирования	
		ОПК-1.1. У-3. Умеет	
		выполнять все этапы	
		операционного	
		исследования, необходимых	
		для решения задач принятия	
		решений в условиях	
		неопределённости и	
		анализировать полученные	
		результаты, интерпретируя	
		их в терминах исходной	
		задачи	
	ОПУ 1.2. П.,	ОПИ 1 2 2 1 2	Toyo 1 Toomer
	ОПК-1.2. Применяет	ОПК-1.2. 3-1. Знает	Тема 1. Теория случайных событий.
	естественнонаучные и общеинженерные	основные методы исследования, приемы и	Тема 2. Схема
	знания, методы	исследования, приемы и инструменты	испытаний Бернулли.
	математического	математического,	Тема 3. Случайные
	анализа и	статистического,	величины.
	моделирования для	экономического анализа и	Тема 4. Предельные
	решения	моделирования	теоремы.

	профессиональных задач	ОПК-1.2. 3-3. Знает основные методы и подходы, используемые в теории вероятностей и математической статистике, фундаментальные основы применения математикостатистического инструментария ОПК-1.2. У-4. Умеет использовать математические методы и модели, адекватные целям и задачам и интерпретировать полученные результаты применительно к моделируемой системе	Тема 5. Основные статистические понятия и статистические оценки. Тема 6. Доверительное оценивание и критерии проверки гипотез для параметров нормального закона.
ОПК-6. Способен анализировать и разрабатывать организационнотехнические и экономические процессы с применением методов системного анализа и математического моделирования	ОПК-6.1. Применяет и адаптирует методы теории систем и системного анализа, математического, статистического и имитационного моделирования, методы исследования математических моделей для автоматизации задач принятия решений	ОПК-6.1. 3-2. Знает основы вероятностно- статистического оценивания многомерных параметров сложных социально- экономических процессов и явлений ОПК-6.1. 3-3. Знает основные понятия, используемые для математического описания задач профессиональной деятельности и современный математический инструментарий ОПК-6.1. У-2. Умеет	Тема 1. Теория случайных событий. Тема 2. Схема испытаний Бернулли. Тема 3. Случайные величины. Тема 4. Предельные теоремы. Тема 5. Основные статистические понятия и статистические оценки. Тема 6. Доверительное оценивание и критерии проверки гипотез для параметров нормального закона.
	ОПК-6.2. Применяет	применять и адаптировать фундаментальные математические знания, математико-статистический инструментарий, вероятностные методы ОПК-6.1. У-3. Умеет проводить систематизацию и обработку результатов наблюдений с целью выявления статистических закономерностей при решении задач в профессиональной деятельности ОПК-6.2. З-1. Знает	Тема 1. Теория
	и адаптирует экономико-	традиционные и современные подходы к	случайных событий. Тема 2. Схема

математические	принятию управленческих	испытаний Бернулли.
модели для приня	тия решений на основе	Тема 3. Случайные
оптимальных	применения методов	величины.
управленческих	оптимизации	Тема 4. Предельные
решений	ОПК-6.2. У-1. Умеет	теоремы.
	выносить	Тема 5. Основные
	аргументированные	статистические понятия
	суждения по вопросам,	и статистические оценки.
	связанным с управлением и	Тема 6. Доверительное
	принятием решений в	оценивание и критерии
	практике управления	проверки гипотез для
	организацией в условиях	параметров нормального
	сложного и динамичного	закона.
	окружения	

МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ, ХАРАКТЕРИЗУЮЩИЕ ЭТАПЫ ФОРМИРОВАНИЯ КОМПЕТЕНЦИЙ

Перечень учебных заданий на аудиторных занятиях

Темы опросов:

Индикаторы достижения: ОПК-1.1; ОПК-1.2; ОПК-6.1; ОПК-6.2

Тема 1. Теория случайных событий.

- 1. Какие случайные события называются невозможными, достоверными?
- 2. Приведите классическое определение вероятности.
- 3. Приведите геометрическое определение вероятности.
- 4. Приведите формулы для числа перестановок из n элементов, числа сочетаний и размещений из n элементов по m элементов.
- 5. Какие события образуют полную группу?
- 6. Сформулируйте теорему сложения вероятностей.
- 7. Какие события называются совместными, а какие несовместными?
- 8. Какие события называются независимыми, а какие зависимыми?
- 9. Дайте определение условной вероятности.
- 10. Сформулируйте теорему умножения вероятностей.

Тема 2. Схема испытаний Бернулли.

- 1. Какие события называют гипотезами?
- 2. Напишите формулу полной вероятности и опишите условия, в которых она применима.
- 3. Напишите формулу Бейеса.
- 4. Опишите условия испытаний, известных как «испытания по схеме Бернулли».
- 5. Как вычислить наивероятнейшее число наступления события при независимых испытаниях?

Тема 3. Случайные величины.

- 1. Дайте определение понятия «случайная величина».
- 2. Чем отличаются дискретные и непрерывные случайные величины?
- 3. Что такое закон распределения случайной величины?
- 4. Что такое функция распределения случайной величины? Как эта функция выглядит для дискретной случайной величины?
- 5. Как определить с помощью функции распределения вероятность попадания случайной величины в заданный интервал?
- 6. Дайте определение плотности распределения. Какими свойствами обладает плотность распределения?
- 7. Что такое начальные и центральные моменты различных порядков?
- 8. С какими моментами связаны математическое ожидание и дисперсия?
- 9. Как определяются числовые характеристики для непрерывной случайной величины?
- 10. Как определяются числовые характеристики для дискретной случайной величины?
- 11. Что такое мода, медиана?
- 12. Перечислите виды распределений непрерывных случайных величин.
- 13. Перечислите виды распределений дискретных случайных величин.
- 14. Выведите числовые характеристики равномерного распределения.
- 15. Дайте определение показательного распределения.
- 16. Дайте определение нормального распределения.\
- 17. то такое двумерная случайная величина?
- 18. Как задается функция распределения двумерной случайной величины?
- 19. Что такое коэффициент корреляции случайных величин? Перечислите основные свойства коэффициента корреляции.

Тема 4. Предельные теоремы.

- 1. Сформулируйте закон больших чисел.
- 2. Сформулируйте центральную предельную теорему Лапласа.
- 3. Сформулируйте теорему, известную как «неравенство Чебышева».
- 4. Сформулируйте локальную теорему Муавра-Лапласа.
- 5. Сформулируйте интегральную теорему Муавра-Лапласа.
- 6. Какие задачи рассматриваются в математической статистике?
- 7. Что такое генеральная и выборочная совокупности?
- 8. Какое различие между выборкой и вариационным рядом?
- 9. Опишите понятия: полигон частот, полигон относительных частот, гистограмма.
- 10. Как построить эмпирическую функцию распределения?

Тема 5. Основные статистические понятия и статистические оценки

- 1. Перечислить свойства гамма и бета функций
- 2. Распределение Стьюдента: свойства, плотность распределения
- 3. Распределение Фишера: свойства, плотность распределения
- 4. Распределение хи-квадрат.
- 5. Какая оценка неизвестного параметра теоретического распределения называется состоятельной? Приведите пример состоятельной оценки.
- 6. Какая оценка неизвестного параметра теоретического распределения называется несмешенной?
- 7. Что является критерием состоятельности оценки?
- 8. Как доказать, что оценка является несмещенной?
- 9. Как находятся точечные оценки математического ожидания и дисперсии?
- 10. Являются ли точечные оценки математического ожидания и дисперсии состоятельными и несмещенными?

Тема 6. Доверительное оценивание и критерии проверки гипотез для параметров нормального закона.

- 1. Что такое доверительный интервал?
- 2. Как строится доверительный интервал для математического ожидания?
- 3. Какую гипотезу называют нулевой, какую конкурирующей?
- 4. Какие ошибки относят к ошибкам первого рода, какие второго рода?
- 5. Что такое статистический критерий?
- 6. В каком случае гипотеза принимается, в каком отвергается?
- 7. Что такое «критерий согласия»?
- 8. Какая случайная величина рассматривается в качестве критерия при проверке гипотезы о распределении генеральной совокупности?

Задания для текущего контроля

Контрольная работа 1 на тему «Случайные события. Основные теоремы». Темы 1-2.

Индикаторы достижения: ОПК-1.1; ОПК-1.2; ОПК-6.1; ОПК-6.2

- 1. Автомобильные номера состоят из трёх букв и четырех цифр. Сколько различных номеров можно составить, используя 26 букв латинского алфавита и 10 цифр?
- 2. В ящике 3 белых и 2 черных шара. Один за другим последовательно вынимаются все шары. Какова вероятность того, что последний шар будет белым?
- 3. Вероятность хотя бы одного попадания в мишень стрелком при трех выстрелах равна 0,875. Найти вероятность попадания в мишень при одном выстреле.
- 4. Найти вероятность того, что при бросании трех игральных костей хотя бы на одной выпадет 5, при условии, что на всех костях выпали грани с нечетным числом очков.
- 5. Значения a и b наудачу выбираются из отрезка [0; 1]. Найти вероятность того, что корни квадратного трехчлена $x^2 + ax + b$)положительны
- 6. В ящике лежат 20 теннисных мячей: 15 новых и 5 игранных. Для игры наудачу выбираются два мяча и после игры возвращаются обратно. Затем для второй игры выбираются опять два мяча. Какова вероятность того, что вторая игра будет проводиться новыми мячами?
- 7. Есть 10 симметричных монет: 8 обычных и на двух герб находится с обеих сторон. Наудачу взятая монета бросается три раза и выпадает три раза герб. Какова вероятность того, что была взята монета с двумя гербами?
- 8. Сколько раз надо подбросить игральный кубик, чтобы наивероятнейшее число появлений четного числа очков составило 6?

Критерии оценки (в баллах):

- 8 баллов выставляется обучающемуся, если ответы на контрольную работу соответствуют индикаторам достижения компетенций ОПК-1.1, ОПК-1.2, ОПК-6.1, ОПК-6.2 на 100%;
- 7 баллов выставляется обучающемуся, если ответы на контрольную работу соответствуют индикаторам достижения компетенций ОПК-1.1, ОПК-1.2, ОПК-6.1, ОПК-6.2 не менее чем на 90%;

- 6 баллов выставляется обучающемуся, если ответы на контрольную работу соответствуют индикаторам достижения компетенций ОПК-1.1, ОПК-1.2, ОПК-6.1, ОПК-6.2 не менее чем на 75%;
- 5 баллов выставляется обучающемуся, если ответы на контрольную работу соответствуют индикаторам достижения компетенций ОПК-1.1, ОПК-1.2, ОПК-6.1, ОПК-6.2 не менее чем на 65%;
- 4 балла выставляется обучающемуся, если ответы на контрольную работу соответствуют индикаторам достижения компетенций ОПК-1.1, ОПК-1.2, ОПК-6.1, ОПК-6.2 не менее чем на 50%;
- 0 баллов выставляется обучающемуся, если ответы на контрольную работу соответствуют индикаторам достижения компетенций ОПК-1.1, ОПК-1.2, ОПК-6.1, ОПК-6.2 менее чем на 50%.

Контрольная работа 2 на тему «Случайные величины»

Темы 3-6.

Индикаторы достижения: ОПК-1.1, ОПК-1.2, ОПК-6.1, ОПК-6.2

- 1. 1 В экзаменационном билете три задачи. Вероятность правильного решения студентом первой задачи равна 0,8, второй 0,6 и третьей 0,3. СВ X –распределение числа правильно решенных задач.
 - Найти закон распределения указанной случайной величины X и ее функцию распределения F(x). Вычислить математическое ожидание M(x), дисперсию D(x) и среднее квадратическое отклонение σ . Построить график распределения F(x).
- 2. Средняя продолжительность разговора по телефону равна 3 минуты. Считая, что время разговора распределено по показательному закону, найти вероятность того, что данный разговор будет длиться меньше 5 минут, если он уже длится больше 3 минут.
- 3. Случайная величина X имеет нормальное распределение, M[X] = 2, D[X] = 0,25. Найти плотность распределения f(x), ее график, а также P(|X-2| < 0,5).
- 4. Дана плотность распределения случайной величины. Найти константу С, функцию распределения F(x), математическое ожидание M(x), вероятность попадания в указанный интервал (a; b). Построить плотность распределения и на графике указать математическое ожидание и найденную вероятность.

$$f(x) = \begin{cases} C(x+2)^{-2}; & x \in [1;3] \\ 0; & x \notin [1;3] \end{cases} \quad a = 2; b = 4$$

5. Совместная плотность распределения пары (ξ, η) задана таблицей. Найти C, при котором случайные величины ξ и η независимы. Написать закон распределения случайной величины $\gamma = \xi - \eta$.

Найти

 $cov(M\xi - \eta, \xi + N\eta)$, где M - сумма цифр в варианте, а <math>N - произведение (у вариантов с 1 по 9: M = N номер варианта).

7	η			
ς	-1	1		
-1	$\frac{1}{3}$	С		
1	$\frac{7}{12}$	$\frac{1}{12}$ – C		

Критерии оценки (в баллах):

- 8 баллов выставляется обучающемуся, если ответы на контрольную работу соответствуют индикаторам достижения компетенций ОПК-1.1, ОПК-1.2, ОПК-6.1, ОПК-6.2 на 100%;
- 7 баллов выставляется обучающемуся, если ответы на контрольную работу соответствуют индикаторам достижения компетенций ОПК-1.1, ОПК-1.2, ОПК-6.1, ОПК-6.2 не менее чем на 90%:
- 6 баллов выставляется обучающемуся, если ответы на контрольную работу соответствуют индикаторам достижения компетенций ОПК-1.1, ОПК-1.2, ОПК-6.1, ОПК-6.2 не менее чем на 75%;
- 5 баллов выставляется обучающемуся, если ответы на контрольную работу соответствуют индикаторам достижения компетенций ОПК-1.1, ОПК-1.2, ОПК-6.1, ОПК-6.2 не менее чем на 65%:
- 4 балла выставляется обучающемуся, если ответы на контрольную работу соответствуют индикаторам достижения компетенций ОПК-1.1, ОПК-1.2, ОПК-6.1, ОПК-6.2 не менее чем на 50%;
- 0 баллов выставляется обучающемуся, если ответы на контрольную работу соответствуют индикаторам достижения компетенций ОПК-1.1, ОПК-1.2, ОПК-6.1, ОПК-6.2 менее чем на 50%.

Комплект тестов/тестовых заданий

Индикаторы достижения: ОПК-1.1, ОПК-1.2, ОПК-6.1, ОПК-6.2

Индикатор компетенции ОПК-1.1

1. Тестовые задания закрытого типа

- 1. В партии из 10 деталей имеется 6 бракованных. На удачу отобраны четыре детали. Тогда вероятность того, что среди отобранных деталей две бракованные, равна ...
 - 1) $\frac{1}{14}$
 - $\frac{1}{35}$

- 3) $\frac{3}{7}$
- 4) ¹/₃
- 2. Игральная кость бросается один раз. Тогда вероятность того, что число очков, выпавших на верхней грани, будет меньше трех, равна ...
 - 1) $\frac{1}{3}$
 - $\frac{1}{2}$
 - $\frac{1}{6}$
 - 4) 1
- 3. Игральная кость бросается два раза. Тогда вероятность того, что сумма выпавших очков десять, равна ...
 - 1) 36
 - 2) 0
 - 3) 36
 - 4) $\frac{1}{12}$
- 4. Из урны, в которой лежат 7 белых и 13 черных шаров, на удачу по одному извлекают два шара без возвращения. Тогда вероятность того, что оба шара будут белыми, равна ...
 - 1) 49/400
 - 39 2) 36
 - 21
 - 3) **200**
 - 4) $\frac{21}{190}$
- 5. Проводятся независимые испытания, в каждом из которых вероятность появления

события A постоянна и равна 0,45. Тогда вероятность того, что при проведении десяти испытаний событие A появится равна шесть раз, вычисляется как ...

1)
$$P_{10}(X=6)=0.45^6*0.55^4$$

²⁾
$$P_{10}(X=6)=0,45^4*0,55^6$$

³⁾
$$P_{10}(X=6) = C_{10}^6 * 0.45^4 * 0.55^6$$

⁴⁾
$$P_{10}(X=6) = C_{10}^6 * 0.45^6 * 0.55^4$$

6. Основная гипотеза имеет вид $H_0: \sigma^2 = 5$. Тогда конкурирующей может являться гипотеза ...

$$H_1: \sigma^2 > 5$$

2)
$$H_1: \sigma^2 \ge 5$$

$$_{3)} H_1: \sigma^2 < 6$$

$$_{4)} H_1: \sigma^2 > 4$$

7. Из генеральной совокупности извлечена выборка объема n=10:

x_i	-1	0	1
n_i	2	3	5

Тогда выборочное среднее квадратическое отклонение равно ...

- 1) $\sqrt{0,61}$
- 2) 0,61
- 3) 0,3
- 4) $\sqrt{0,4}$
- 8. Соотношение вида P(K<-3,49)=0,001 можно определить ...
 - 1) Область принятия гипотезы
 - 2) Двустороннюю критическую область
 - 3) Правостороннюю критическую область
 - 4) Левостороннюю критическую область

- 9. Правосторонняя критическая область может определяться из соотношения ...
 - 1) P(K > 2,2) = 0,05

 - P(K < -2,2) = 0,053) P(K < -2,2) + P(K > 2,2) = 0,05
 - 4) P(-2,2 < K < 2,2) = 0.95
- 10. Дан доверительный интервал (25,44; 26,98) для оценки математического ожидания нормально распределенного количественного признака. Тогда при увеличении надежности (доверительной вероятности) оценки доверительный интервал может принять вид ...
 - 1) (24,04; 28,38)
 - 2) (25,74; 26,68)
 - 3) (24,04; 26,98)
 - 4) (24,14; 28,38)

Тестовые задания открытого типа

- 11. Из урны, в которой находятся 6 черных, 4 белых и 10 зеленых шаров, вынимают случайным образом один шар. Тогда вероятность того, этот шар будет белым, равна ...
- 12. Непрерывная случайная величина X задана плотностью распределения вероятностей:

$$f(x) = \begin{cases} 0 & \text{при } x \le 0, \\ \frac{x}{8} & \text{при } 0 < x \le 4, \\ 0 & \text{при } x > 4. \end{cases}$$

Тогда вероятность P(1 < X < 3) равна ...

13. Дискретная случайная величина X задана законом распределения вероятностей:

X	1	3	6
p	0,6	0,3	0,1

Тогда ее математическое ожидание равно ...

14. В первой урне 3 черных и 7 белых шаров. Во второй урне 4 белых и 6 черных шаров. Из наудачу взятой урны вытаскивается один шар. Тогда вероятность того, что этот шар белый, равна ...

- 15. Выборочное уравнение прямой линии регрессии Y на X имеет вид y=2,7+0,6x, а выборочные средние квадратические отклонения равны: $O_x=0,7$, $O_y=2,8$. Тогда выборочный коэффициент корреляции r_B равен ...
- 16. При построении выборочного уравнения парной регрессии вычислены выборочный коэффициент корреляции $r_B=0,54$ и выборочные средние квадратические отклонения $\sigma_X=1,6,\ \sigma_Y=3,2.$ Тогда выборочный коэффициент регрессии Y на X равен ...
- 17. Выборочное уравнение прямой линии регрессии Y на X имеет вид y=-8,4-2,1x. Тогда выборочный коэффициент корреляции может быть равен ...
- 18. При построении выборочного уравнения парной регрессии вычислены выборочный коэффициент корреляции $r_B = -0.66$ и выборочные средние квадратические отклонения $\sigma_X = 2.4$, $\sigma_Y = 1.2$. Тогда выборочный коэффициент регрессии X на Y равен ...
- 19. Брак при производстве некоторого изделия вследствие дефекта F составляет 10%. Среди изделий, забракованных вследствие дефекта F, дефекта G встречается в 65% случаев; а среди изделий, свободных от дефекта F, дефекта G встречается в 7% случаев.

Пусть р — вероятность того, что случайно взятое изделие будет признано бракованным как вследствие дефекта F, как и вследствие дефекта G. Тогда значение 200р равно ...

20. У стрелка имеется четыре патрона для стрельбы по удаляющейся цели, причём вероятность попадания в цель первым выстрелом равна 0,9, а при каждом следующем выстреле уменьшается на 0,2. Стрелок производит выстрелы по цели до первого попадания.

Если вероятность поражения цели равна р, то значение 10000 х (1- р) равно ...

21. Из генеральной совокупности извлечена выборка объема n=20:

Xi	-2	3	5
n_i	5	11	4

Тогда несмещенная оценка математического ожидания равна ...

- 22. Проведено четыре измерения (без систематических ошибок) некоторой случайной величины (в мм): 8, 9, х₃, 12. Если несмещенная оценка математического ожидания равна 10, то выборочная дисперсия будет равна ...
- 23. Проведено пять измерений (без систематических ошибок) некоторой случайной величины (в мм): 5, 6, 7, 8, 10. Тогда несмещенная оценка математического ожидания равна ...

- 24. Выборочное уравнение прямой линии регрессии Y на X имеет вид y=-5,0+2,5x. Тогда выборочный коэффициент корреляции может быть равен ...
- 25. Из генеральной совокупности извлечена выборка объема n=20:

Xi	-2	3	5
n_i	5	11	4

Тогда несмещенная оценка математического ожидания равна ...

26. Дискретная случайная величина X задана законом распределения вероятностей:

X	1	3
p	0,4	0,6

Тогда ее дисперсия равна ...

- 27. Медиана вариационного ряда 2, 3, 3, 4, 5, 6, 8, 10, 12 равна ...
- 28. Мода вариационного ряда 1, 2, 2, 3, 4, 4, x_i , 7, 7, 8, 9 равна 4. Тогда значение x_i равно ...
- 29. Размах варьирования вариационного ряда 1, 2, 4, 4, 6, 8, 9, 10,12, 15 равен ...
- 30. Из урны, в которой находятся 6 черных, 4 белых и 10 зеленых шаров, вынимают случайным образом один шар. Тогда вероятность того, этот шар будет белым, равна ...

Ответы (ключи) на тестовые залания

OIBCIBI		na recro	выс зада	111111					
вопрос	ответ	вопрос	ответ	вопрос	ответ	вопрос	ответ	вопрос	ответ
1	3	7	1	13	2,1	19	13	25	2,15
2	1	8	4	14	0,55	20	105	26	0,96
3	4	9	1	15	-0,15	21	2,15	27	5
4	4	10	1	16	1,08	22	2,5	28	4
5	4	11	0,2	17	-0,45	23	7,2	29	14
6	1	12	0,5	18	-1,31	24	0,6	30	0,2

Индикатор компетенции ОПК-1.2

Тестовые задания закрытого типа

- 1. В первой урне 7 черных и 3 белых шара. Во второй урне 4 черных и 6 белых шаров. Из наудачу взятой урны вытаскивается один шар, который оказался белым. Тогда вероятность того, что этот шар был вынут из первой урны, равна ...
 - $\frac{1}{3}$
 - $\frac{2}{3}$
 - 2) 3
 - $\frac{9}{20}$
 - $\frac{7}{20}$

2. Непрерывная случайная величина X задана функцией распределения вероятностей:

Непрерывная случайная велич
$$F(x) = \begin{cases} 0 & \text{при } x \le 0, \\ \frac{x}{5} & \text{при } 0 < x \le 5, \\ 1 & \text{при } x > 5. \end{cases}$$

Тогда ее плотность распределения вероятностей имеет вид ...

$$f(x) = \begin{cases} 0 & \text{при } x < 0, \\ \frac{1}{5} & \text{при } 0 < x < 5, \\ 0 & \text{при } x > 5. \end{cases}$$

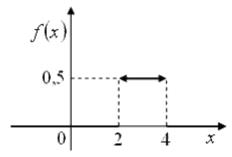
$$f(x) = \begin{cases} 0 & \text{при } x < 0, \\ \frac{1}{5} & \text{при } 0 < x < 5, \\ 1 & \text{при } x > 5. \end{cases}$$

$$f(x) = \begin{cases} 1 & \text{при } x < 0, \\ \frac{1}{5} & \text{при } 0 < x < 5, \\ 0 & \text{при } x > 5. \end{cases}$$

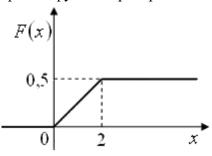
$$f(x) = \begin{cases} 0 & \text{при } x < 0, \\ \frac{x^2}{10} & \text{при } 0 < x < 5, \\ 0 & \text{при } x > 5. \end{cases}$$

3. Из урны, в которой лежат 8 белых и 12 черных шаров, на удачу по одному извлекают два шара без возвращения. Тогда вероятность того, что оба шара будут чёрными, равна ...

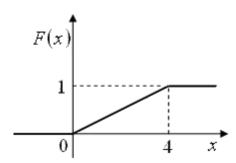
4)

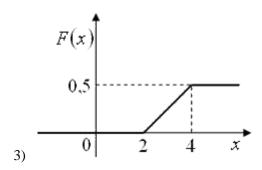

$$\frac{9}{25}$$

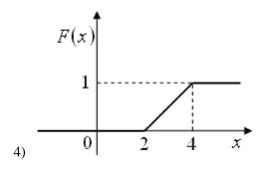
$$\frac{33}{100}$$


4)
$$\frac{14}{95}$$

4. С первого станка на сборку поступает 70%, а со второго – 30% всех деталей. Среди деталей первого станка бракованных 4%, второго – 5%. Тогда вероятность того, что поступающая на сборку деталь качественная, равна ...


- 1) 0,955
- 2) 0,959
- 3) 0,953
- 4) 0,957
- 5. Дан график плотности распределения вероятностей непрерывной случайной величины:


Тогда график ее функции распределения вероятностей имеет вид ...



1)

2)

6. Двусторонняя критическая область может определяться из соотношения ...

1)
$$P(K < -2.5) + P(K > 2.5) = 0.05$$

$$P(K > 2.5) = 0.05$$

3)
$$P(K < -2.5) = 0.05$$

$$P(-2.5 < K < 2.5) = 0.95$$

7. В результате измерений некоторой физической величины одним прибором (без систематических ошибок) получены следующие результаты (в мм): 10, 12, 14. Тогда выборочная дисперсия равна ...

$$\frac{8}{3}$$

$$\frac{4}{3}$$

8. Точечная оценка математического ожидания нормально распределенного количественного признака равна 13,6. Тогда его интервальная оценка с точностью ^{2,7} имеет вид ...

9. Из генеральной совокупности X извлечена выборка объема n=150:

Xi	3	5	7	9
n_i	12	48	60	30

Тогда её эмпирическая функция распределения вероятностей $F^*(x)$ имеет вид ...

1)
$$F^*(x) =$$

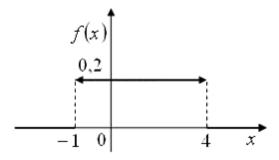
$$\begin{cases}
0 \text{ при } x \le 3, \\
0,08 \text{ при } 3 < x \le 5, \\
0,40 \text{ при } 5 < x \le 7, \\
0,80 \text{ при } 7 < x \le 9, \\
1 \text{ при } x > 9
\end{cases}$$

2)
$$F^*(x) =$$

$$\begin{cases}
1 \text{ при } x \le 3, \\
0,80 \text{ при } 3 < x \le 5, \\
0,40 \text{ при } 5 < x \le 7, \\
0,08 \text{ при } 7 < x \le 9, \\
0 \text{ при } x > 9
\end{cases}$$

3)
$$F^*(x) =$$

$$\begin{cases}
0 \text{ при } x \leq 3, \\
0,08 \text{ при } 3 < x \leq 5, \\
0,40 \text{ при } 5 < x \leq 7, \\
0,80 \text{ при } 7 < x \leq 9, \\
0 \text{ при } x > 9
\end{cases}$$


4)
$$F^*(x) =$$

$$\begin{cases}
0,08 \text{ при } x \leq 3, \\
0,32 \text{ при } 3 < x \leq 5, \\
0,40 \text{ при } 5 < x \leq 7, \\
0,20 \text{ при } 7 < x \leq 9, \\
1 \text{ при } x > 9
\end{cases}$$

- 10. При заданном уровне значимости α проверяется нулевая гипотеза H_0 : p = 0.75 о равенстве неизвестной вероятности p гипотетическому значению $p_0 = 0.75$. Тогда конкурирующий может являться гипотеза ...
 - 1) $H_1: p < 0.75$
 - 2) $H_1: p \le 0.75$
 - 3) $H_1: p + 0.75=0$
 - 4) $H_1: p \ge 0.75$

Тестовые задания открытого типа

- 11. Медиана вариационного ряда 1, 3, 4, 5, 5, 7, 9, 11, 13, 14 равна ...
- 12. Мода вариационного ряда 1, 3, 3, 4, 5, 5, 5, 7, 7, 8, 9 равна ...
- 13. Непрерывная случайная величина X задана плотностью распределения вероятностей:

Тогда ее математическое ожидание равно ...

- 14. Собирается партия исправных изделий с двух предприятий. Первое предприятие поставляет 30% всех изделий, а второе 70%. Вероятность исправной работы изделия первого предприятия равна 0,8, второго 0,7. Тогда вероятность того, что случайно взятое изделие будет неисправным, равна ...
- 15. Дискретная случайная величина Х задана законом распределения вероятностей:

X	-1	0	4
P	0,3	0,2	0,5

Тогда её дисперсия D(X) равна ...

- 16. Размах варьирования вариационного ряда 1, 2, 4, 4, 6, 8, 9, 10,12, 15 равен ...
- 17. Мода вариационного ряда 1, 2, 2, 3, 4, 4, x_i , 7, 7, 8, 9 равна 4. Тогда значение x_i равно ...
- 18. В первой урне 2 белых и 8 черных шаров. Во второй урне 3 черных и 7 белых шаров. Из наудачу взятой урны вытаскивается один шар. Тогда вероятность того, что этот шар черный, равна ...
- 19. Игральная кость бросается один раз. Тогда вероятность того, что на верхней грани выпадет нечетное число очков, равна ...
 - 20 . Дискретная случайная величина X задана законом распределения вероятностей:

X	1	3
p	0,4	0,6

Тогда ее дисперсия равна ...

- 21. После бури на участке между 50-ым и 70-ым километрами высоковольтной линии электропередач произошел обрыв проводов. Тогда вероятность того, что авария произошла между 60-ым и 63-им километрами, равна ...
- 22. Медиана вариационного ряда 2, 3, 3, 4, 5, 6, 8, 10, 12 равна ...

- 23. Выборочное уравнение прямой линии регрессии Y на X имеет вид y=2,7+0,6x, а выборочные средние квадратические отклонения равны: $O_x=0,7$, $O_y=2,8$. Тогда выборочный коэффициент корреляции r_B равен ...
- 24. Из генеральной совокупности извлечена выборка объема n = 20:

x_i	9	10	11
n_i	5	9	6

Тогда несмещенная оценка математического ожидания равна ...

- 25. Дан доверительный интервал (51,17; 62,41) для оценки математического ожидания нормально распределенного количественного признака. Тогда точность этой оценки равна ...
- 26. Проведено пять измерений (без систематических ошибок) некоторой случайной величины (в мм): 6,1; 6,3; 6,4; 6,5; 6,6. Тогда несмещенная оценка математического ожидания равна ...
- 27. Брак при производстве некоторого изделия вследствие дефекта F составляет 10%. Среди изделий, забракованных вследствие дефекта F, дефекта G встречается в 65% случаев; а среди изделий, свободных от дефекта F, дефекта G встречается в 7% случаев.

Вероятность того, что продукция будет забракована только вследствие дефекта G, равна... 28. У стрелка имеется четыре патрона для стрельбы по удаляющейся цели, причём вероятность попадания в цель первым выстрелом равна 0,6, а при каждом следующем выстреле уменьшается на 0,1. Стрелок производит выстрелы по цели до первого попадания. Наивероятнейшее число произведенных выстрелов равно ...

- 29. Дан доверительный интервал (12,8; 16,3) для оценки математического ожидания нормально распределенного количественного признака. Тогда точечная оценка математического ожидания равна ...
- 30. Выборочное уравнение прямой линии регрессии Y на X имеет вид y=2,7+0,6x, а выборочные средние квадратические отклонения равны: $O_x=0,7$, $O_y=2,8$. Тогда выборочный коэффициент корреляции r_B равен ...

Ответы (ключи) на тестовые залания

OTBUID	Ответы (ключи) на тестовые задания								
вопрос	ответ	вопрос	ответ	вопрос	ответ	вопрос	ответ	вопрос	ответ
1	1	7	1	13	1,5	19	0,5	25	5,62
2	1	8	1	14	0,27	20	0,96	26	6,38
3	4	9	1	15	5,41	21	0,15	27	0,063
4	4	10	1	16	14	22	5	28	1
5	4	11	6	17	4	23	0,15	29	14,55
6	1	12	5	18	0,55	24	10,05	30	0,15

Индикатор компетенции ОПК-6.1

Тестовые задания закрытого типа

1. Непрерывная случайная величина X задана плотностью распределения вероятностей:

$$f(x) = \begin{cases} 0 & \text{при } x \le 0, \\ \frac{x}{8} & \text{при } 0 < x \le 4, \\ 0 & \text{при } x > 4. \end{cases}$$

Тогда ее математическое ожидание равно ...

- 1) $\frac{3}{3}$
- 2) 2
- 3) 8
- **4)** 1
- 2. В партии из 10 деталей имеется 3 бракованные. Наудачу отобраны три детали. Тогда вероятность того, что все отобранные детали будут бракованными, равна ...
 - 1 1) 120
 - 2) $\frac{1}{3}$

 - 4) 1
- 3. Если все возможные значения дискретной случайной величины X увеличились в четыре раза, то её дискретная ...
 - 1) увеличиться в два раза
 - 2) увеличиться в четыре раза
 - 3) не измениться
 - 4) увеличиться в шестнадцать раза
- 4. Игральная кость бросается два раза. Тогда вероятность того, что сумма выпавших очков десять, равна ...
 - 1) 36
 - 2) 0

3)
$$\frac{1}{12}$$

5. Дискретная случайная величина X задана законом распределения вероятностей:

X	5	8	11	14
р	0,15	0,20	0,55	0,10

Тогда её функция распределения вероятностей имеет вид ...

1 при
$$x \le 5$$
, $0,90$ при $5 < x \le 8$, $0,35$ при $8 < x \le 11$, $0,15$ при $11 < x \le 14$, 0 при $x > 14$

2)
$$F^*(x) =$$

$$\begin{cases}
0 \text{ при } x \le 5, \\
0,15 \text{ при } 5 < x \le 8, \\
0,35 \text{ при } 8 < x \le 11, \\
0,90 \text{ при } 11 < x \le 14, \\
0 \text{ при } x > 14
\end{cases}$$

3)
$$F^*(x) =$$

$$\begin{cases}
0 \text{ при } x \le 5, \\
0,15 \text{ при } 5 < x \le 8, \\
0,35 \text{ при } 8 < x \le 11, \\
0,90 \text{ при } 11 < x \le 14, \\
1 \text{ при } x > 14
\end{cases}$$

4)
$$F^*(x) =$$

$$\begin{cases}
0,15 \text{ при } x \leq 5, \\
0,20 \text{ при } 5 < x \leq 8, \\
0,55 \text{ при } 8 < x \leq 11, \\
0,10 \text{ при } 11 < x \leq 14, \\
1 \text{ при } x > 14
\end{cases}$$

6. Точечная оценка математического ожидания нормально распределенного количественного признака равна 3,0 . Тогда его интервальная оценка может иметь вид ...

7. Правосторонняя критическая область может определяться из соотношения ...

$$P(K > 2,2) = 0.05$$

$$P(K < -2,2) = 0.05$$

$$P(K < -2,2) = 0,05$$

$$P(K < -2,2) + P(K > 2,2) = 0,05$$

$$P(-2,2 < K < 2,2) = 0.95$$

8. Точечная оценка математического ожидания нормально распределённого распределения равна 11. Тогда его интервальная оценка может иметь вид...

- 1) (10,5; 11,5)
- 2) (10,5; 11)
- 3) (11; 11,5)
- 4) (10,5; 10,9)

9. Из генеральной совокупности X извлечена выборка объема n=100:

Xi	1	3	5	7
n_i	11	32	47	10

1)
$$F^*(x) =$$

$$\begin{cases}
0 \text{ при } x \le 1, \\
0,11 \text{ при } 1 < x \le 3, \\
0,43 \text{ при } 3 < x \le 5, \\
0,90 \text{ при } 5 < x \le 7, \\
1 \text{ при } x > 7
\end{cases}$$

2)
$$F^*(x) =$$

$$\begin{cases}
0,11 \text{ при } x \leq 1, \\
0,32 \text{ при } 1 < x \leq 3, \\
0,47 \text{ при } 3 < x \leq 5, \\
0,10 \text{ при } 5 < x \leq 7, \\
1 \text{ при } x > 7
\end{cases}$$

3)
$$F^*(x) =$$

$$\begin{cases}
0 \text{ при } x \le 1, \\
0,11 \text{ при } 1 < x \le 3, \\
0,43 \text{ при } 3 < x \le 5, \\
0,90 \text{ при } 5 < x \le 7, \\
0 \text{ при } x > 7
\end{cases}$$

4)
$$F^*(x) =$$

$$\begin{cases} 0,08 \text{ при } x \leq 1, \\ 0,90 \text{ при } 1 < x \leq 3, \\ 0,43 \text{ при } 3 < x \leq 5, \\ 0,11 \text{ при } 5 < x \leq 7, \\ 1 \text{ при } x > 7 \end{cases}$$

- 10. Точечная оценка математического ожидания нормально распределённого количественного признака равна 3,728. Тогда его интервальная оценка может иметь вид...
 - 1) (3,367; 4,089)
 - 2) (3,367; 3,728)
 - 3) (3,728; 4,146)
 - 4) (3,310; 4,146)

Тестовые задания открытого типа

- 11. Собирается партия исправных изделий с двух предприятий. Первое предприятие поставляет 60% всех изделий, а второе 40%. Вероятность исправной работы изделия первого предприятия равна 0,9, второго 0,8. Тогда вероятность того, что случайно взятое изделие будет работать исправно, равна ...
- 12. Дискретная случайная величина Х задана законом распределения вероятностей:

X	-1	0	4
P	0,3	0,2	0,5

Тогда её математическое ожидание M(X) равна ...

13. Пусть X – дискретная случайная величина, заданная законом распределения вероятностей:

X	-1	5
p	0,4	0,6

Тогда математическое ожидание этой случайной величины равно ...

- 14. Мода вариационного ряда 7; 8; 9; 9; 9; 10; 10; 12; 13; 14 равна ...
- 15. В первой урне 2 белых и 8 черных шаров. Во второй урне 3 белых и 7 черных шаров. Из наудачу взятой урны вытаскивается один шар, который оказался белым. Тогда вероятность того, что этот шар вынули из второй урны, равна ...
- 16. Наладчик обслуживает три станка. Вероятность того, что в течение часа потребует его вмешательства первый станок, равна 0,25; второй 0,20; третий 0,15. Тогда вероятность того, что в течение часа потребует вмешательства наладчика хотя бы один станок, равна ...
- 17. Дискретная случайная величина X задана законом распределения вероятностей:

X	11	13	14	15

P	0,25	0,20	0,15	0,40

 Р
 0,25
 0,20
 0,15
 0,40

 Тогда вероятность $P(11 \le X \le 14)$ равна ...

- 18. Медиана вариационного ряда 5, 6, 8, 8, 9, 10, 11, 12, 14, 15, 16, 17 равна ...
- 19. Дискретная случайная величина Х задана законом распределения вероятностей:

X	7	10	13	16
P	0,45	0,15	0,35	0,05

Тогда вероятность $P(7 \le X < 16)$ равна ...

- 20. Вероятность изготовления бракованного изделия на первом станке равна 0,15, а на втором станке –0,2. Производительность второго станка в три раза больше, чем первого. Наудачу взятая деталь оказалась бракованной. Тогда вероятность того, что эта деталь изготовлена на втором станке, равна ...
- 21. Размах варьирования вариационного ряда 53, 55, 55, 56, 56, 56, 57, 59, 60, 61, 63, равен
- 22. Из генеральной совокупности извлечена выборка объема n=80:

Xi	2	5	8	11	14
n_i	1	12	25	36	6

Тогда относительная частота варианты $X_i = 11$ равна ...

- 23. Выборочное уравнение прямой линии регрессии У на Х имеет вид y=-5,0+2,5х. Тогда выборочный коэффициент корреляции может быть равен ...
- 24. Дан доверительный интервал (12,8; 16,3) для оценки математического ожидания нормально распределенного количественного признака. Тогда точечная оценка математического ожидания равна ...
- 25. Проведено пять измерений (без систематических ошибок) некоторой случайной величины (в мм): 5, 6, 7, 8, 10. Тогда несмещенная оценка математического ожидания равна ...
- 26. Брак при производстве некоторого изделия вследствие дефекта F составляет 10%. Среди изделий, забракованных вследствие дефекта F, дефекта G встречается в 65% случаев; а среди изделий, свободных от дефекта F, дефекта G встречается в 7% случаев.

Пусть р – вероятность того, что случайно взятое изделие будет признано бракованным как вследствие дефекта F, как и вследствие дефекта G. Тогда значение 200р равно ...

27. Банк выдал кредит размером 200 тыс. руб сроком на один год под 20% годовых. Известно, что с вероятностью 0,9 заемщик погасит кредит полностью 0,05 погасит только 40% основного долга и с вероятностью 0,05 – не погасит ничего.

Математическое ожидание прибыли банка от этой кредитной операции равно _____ тыс.руб.

28. У стрелка имеется четыре патрона для стрельбы по удаляющейся цели, причём вероятность попадания в цель первым выстрелом равна 0,9, а при каждом следующем выстреле уменьшается на 0,2. Стрелок производит выстрелы по цели до первого попадания.

Наивероятнейшее число произведенных выстрелов равно ...

29. Из генеральной совокупности извлечена выборка объема n = 10:

x_i	-1	0	2
n_i	3	4	3

Тогда выборочная дисперсия равна ...

30. Выборочное уравнение прямой линии регрессии Y на X имеет вид y=-5,0+2,5x. Тогда выборочный коэффициент корреляции может быть равен ...

Ответы (ключи) на тестовые задания

вопрос	ответ								
1	1	7	1	13	2,6	19	0,95	25	7,2
2	1	8	1	14	9	20	0,8	26	13
3	4	9	1	15	0,6	21	10	27	20
4	3	10	1	16	0,17	22	0,45	28	1
5	3	11	0,86	17	0,6	23	0,6	29	1,41
6	1	12	1,7	18	10,5	24	14,55	30	0,6

Индикатор компетенции ОПК-6.2

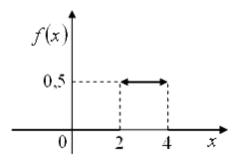
Тесты по дисциплине «Б1.О.17 Теория вероятностей и математическая статистика»

Тестовые задания закрытого типа

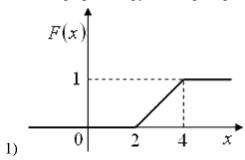
1. Непрерывная случайная величина X задана плотностью распределения вероятностей:

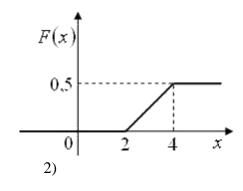
$$f(x) = \begin{cases} 0 & \text{при } x \le 0, \\ Cx^2 & \text{при } 0 < x \le 4, \\ 0 & \text{при } x > 4. \end{cases}$$

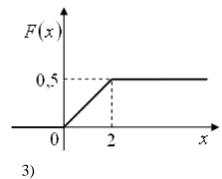
Тогда значение параметра C равно ...

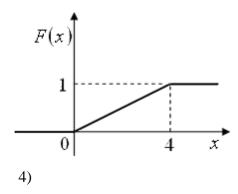

$$\frac{3}{64}$$

$$\frac{1}{64}$$


$$\frac{1}{16}$$


$$\frac{1}{192}$$


2. Дан график плотности распределения вероятностей непрерывной случайной величины X :



Тогда график ее функции распределения вероятностей имеет вид ...

3. Непрерывная случайная величина X задана плотностью распределения вероятностей:

$$f(x) = \begin{cases} 0 & \text{при } x \le 0, \\ \frac{x}{18} & \text{при } 0 < x \le 6, \\ 0 & \text{при } x > 6. \end{cases}$$
 Тогда вероятность $P(-1 < X < 5)$ равна ...

- 1) 36
- 18

- 4. В группе из 11 студентов 6 отличников. На удачу отобраны 4 студента. Тогда вероятность того, что среди отобранных студентов нет отличников, равна ...
 - 2 1) 165
- 5. Непрерывная случайная величина Х задана плотностью распределения

$$f(x) = \frac{1}{4\sqrt{2\pi}}e^{-\frac{(x+3)^2}{32}}.$$

вероятностей $4\sqrt{2\pi}$ Тогда математическое ожидание α и среднее квадратическое отклонение σ этой случайной величины равны ...

1)
$$\alpha = -3, \sigma = 4$$

2)
$$\alpha = 3, \sigma = 16$$

3)
$$\alpha = -3$$
, $\sigma = 16$

4)
$$\alpha = 3, \sigma = 4$$

6. Левосторонняя критическая область может определяться из соотношения ...

$$P(K < -1.5) = 0.05$$

$$P(K > 1.5) = 0.05$$

3)
$$P(K < -1.5) + P(K > 1.5) = 0.05$$

$$P(-1.5 < K < 1.5) = 0.95$$

7. Точечная оценка среднего квадратического отклонения нормально распределенного количественного признака равна 4,0 . Тогда его интервальная оценка может иметь вид ...

8. Основная гипотеза имеет вид H_0 : a=20 . Тогда конкурирующей может являться гипотеза ...

1)
$$H_1: a \neq 20$$

$$H_1: a \ge 19$$

3)
$$H_1: a \le 21$$

$$H_1: a > 22$$

9. Правосторонняя критическая область может определяться из соотношения ...

1)
$$P(K > 1.86) = 0.05$$

$$P(K < -1.86) = 0.05$$

2)
$$P(K < -1.86) = 0.05$$

3) $P(K < -1.86) + P(K > 1.86) = 0.05$

$$P(-1,86 < K < 1,86) = 0,95$$

- 10. При заданном уровне значимости α проверяется нулевая гипотеза H_0 : D(X)=D(Y) о равенстве дисперсий двух нормальных генеральных совокупностей Х и Ү. Тогда конкурирующий может являться гипотеза ...
 - 1) $H_1: D(X) > D(Y)$
 - 2) $H_1: D(X) \ge D(Y)$
 - 3) $H_1: D(X) \le D(Y)$
 - 4) $H_1: D(X) + D(Y)=0$

Тестовые задания открытого типа

11. Дискретная случайная величина X задана законом распределения вероятностей:

X	11	13	14	15
р	0,25	0,20	0,15	0,40

Тогда вероятность $P(11 \le X \le 14)$ равна ...

- 12. Мода вариационного ряда 1; 2; 3; 4; 4; 6; равна ...
- 13. Дискретная случайная величина Х задана законом распределения вероятностей:

X	7	10	13	16	
P	0,45	0,15	0,35	0,05	

Тогда вероятность $P(7 \le X < 16)$ равна ...

- 14. Два стрелка производят по одному выстрелу. Вероятность попадания в цель для первого и второго стрелка равна 0,9 и 0,4 соответственно. Тогда вероятность того, что в цель попадут оба стрелка равна ...
- 15. С первого станка на сборку поступает 70%, а со второго 30% всех деталей. Среди деталей первого станка бракованных 4%, второго – 5%. Тогда вероятность того, что поступающая на сборку деталь качественная, равна ...
- 16. Неправильная случайная величина X задана плотностью распределения вероятностей:

$$F(x) = \begin{cases} 0 \text{ при } x \le 0, \\ \frac{2x}{225} \text{ при } 0 < x \le 15, \\ 0 \text{ при } x > 15 \end{cases}$$

Тогда её дисперсия равна ...

17. Двумерная дискретная случайная величина (X, Y) задана законом распределения вероятностей:

X	$x_1 = 5$	$x_2 = 8$	$x_3 = 11$
Y			
y ₁ =8	0,15	0,10	0,05
y ₂ =9	0,05	0,15	0,25
y ₃ =10	0,10	0,05	0,10

Тогда вероятность $P(8 \le Y < 10)$ равна ...

18. Дискретная случайная величина Х задана законом распределения вероятностей:

X	1	3	4	5
P	0,4	0,2	0,1	0,3

Тогда её математическое ожидание равно ...

- 19. С первого станка на сборку поступает 70%, а со второго 30% всех деталей. Среди деталей первого станка бракованных 4%, второго 5%. Тогда вероятность того, что поступающая на сборку деталь качественная, равна ...
- 20. Проведено четыре измерения (без систематических ошибок) некоторой случайной величины (в мм): 8, 9, х₃, 12. Если несмещенная оценка математического ожидания равна 10, то выборочная дисперсия будет равна ...
- 21. Дан доверительный интервал (12,76; 19,45) для оценки математического ожидания нормально распределенного количественного признака. Тогда точность этой оценки равна ...
- 22. Выборочное уравнение прямой линии регрессии *Y* на *X* имеет вид y=-8,4-2,1х. Тогда выборочный коэффициент корреляции может быть равен ...
- 23. Из генеральной совокупности извлечена выборка объема n=20:

Xi	-2	3	5
n _i	5	11	4

Тогда несмещенная оценка математического ожидания равна ...

- 24. Дан доверительный интервал (16,4; 19,6) для оценки математического ожидания нормально распределенного количественного признака. Тогда точность этой оценки равна ...
- 25. Из генеральной совокупности извлечена выборка объема n = 10:

x_i	-1	0	2
n_i	3	4	3

Тогда выборочная дисперсия равна ...

26. Банк выдал кредит размером 200 тыс. руб сроком на один год под 20% годовых. Известно, что с вероятностью 0,9 заемщик погасит кредит полностью 0,05 погасит только 40% основного долга и с вероятностью 0,05 – не погасит ничего.

Математическое ожидание прибыли банка от этой кредитной операции равно _____ тыс.руб.

27. У стрелка имеется четыре патрона для стрельбы по удаляющейся цели, причём вероятность попадания в цель первым выстрелом равна 0,6, а при каждом следующем выстреле уменьшается на 0,1. Стрелок производит выстрелы по цели до первого попадания.

Если вероятность поражения цели равна р, то значение 1000 * (1- р) равно ...

28. Для принятия решений о покупке ценных бумаг была разработана система анализа рынка. Из прошлых данных известно, что 30% рынка представляют собой «плохие» ценные бумаги — неподходящие объекты для инвестирования. Предложенная система определяет 80% «плохих» ценных бумаг как потенциально «плохие», но также определяет 20% «хороших» ценных бумаг как потенциально «плохие».

Вероятность того, что при анализе рынка ценная бумага будет определена как потенциально «хорошая», будет равна ...

29. Из генеральной совокупности извлечена выборка объема n=80:

Xi	2	5	8	11	14
ni	1	12	25	36	6

Тогда относительная частота варианты $X_i = 11$ равна ...

30 . Для принятия решений о покупке ценных бумаг была разработана система анализа рынка. Из прошлых данных известно, что 30% рынка представляют собой «плохие» ценные бумаги — неподходящие объекты для инвестирования. Предложенная система определяет 80% «плохих» ценных бумаг как потенциально «плохие», но также определяет 20% «хороших» ценных бумаг как потенциально «плохие».

Если при анализе рынка ценных бумаг рассмотрена выборка из 500 ценных бумаг, то наиболее вероятно, что ____ «хороших» ценных бумаг будет определены как потенциально «хорошие».

Ответы (ключи) на тестовые задания

вопрос	ответ								
1	1	7	1	13	0,95	19	0,957	25	1,41
2	1	8	1	14	0,36	20	2,5	26	20
3	1	9	1	15	0,957	21	3,345	27	84
4	3	10	2	16	12,5	22	-0,45	28	0,38
5	1	11	0,6	17	0,75	23	2,15	29	0,45
6	1	12	4	18	2,9	24	1,6	30	190

Критерии оценки (в баллах):

- 4 балла выставляется обучающемуся, если он соответствует индикаторам достижения компетенций ОПК-1.1, ОПК-1.2, ОПК-6.1, ОПК-6.2 на 100%;
- 3 балла выставляется обучающемуся, если он соответствует индикаторам достижения компетенций ОПК-1.1, ОПК-1.2, ОПК-6.1, ОПК-6.2 не менее чем на 90%;
- 2 балла выставляется обучающемуся, если он соответствует индикаторам достижения компетенций ОПК-1.1, ОПК-1.2, ОПК-6.1, ОПК-6.2 не менее чем на 65%;
- 1 балл выставляется обучающемуся, если он соответствует индикаторам достижения компетенций ОПК-1.1, ОПК-1.2, ОПК-6.1, ОПК-6.2 не менее чем на 50%;
- 0 баллов выставляется обучающемуся, если он соответствует индикаторам достижения компетенций ОПК-1.1, ОПК-1.2, ОПК-6.1, ОПК-6.2 менее чем на 50%.

Задания для творческого рейтинга

Темы индивидуальных проектов

Индикаторы достижения: ОПК-1.1., ОПК-1.2, ОПК-6.1, ОПК-6.2

Задание 1. В результате эксперимента получены статистические данные (таблица 1). Требуется:

- 1) записать значения результатов эксперимента в виде вариационного ряда;
- 2) найти размах варьирования и разбить его на интервалы, используя
 - а. формулу Стёрджеса;
 - b. либо любую другую формулу, либо подобрать нужное число вручную;
- 3) построить интервальный статистический ряд, **полигон частот**, гистограмму относительных частот;
- 4) найти эмпирическую функцию распределения и построить её график;
- 5) найти числовые характеристики выборки: выборочное среднее, выборочную дисперсию, выборочную исправленную дисперсию;
- 6) найти доверительный интервал при надежности 0,9 для математического ожидания;
- 7) приняв в качестве нулевой гипотезы H₀: {генеральная совокупность, из которой извлечена выборка, имеет нормальное распределение}, проверить её, пользуясь критерием Пирсона при уровне значимости 0,05.

Выделенные жирным характеристики нужно искать для группированных данных (чётные номера вариантов), либо для исходных негруппированных (нечётные номера вариантов).

Задание 2. В результате эксперимента получены статистические данные, представленные в виде корреляционной таблицы (таблица 2). Требуется:

- 1) найти уравнение прямых среднеквадратической регрессии;
- 2) построить уравнение найденных прямых и случайные точки выборки на одном графике.

Вариант 1. Таблица 1.

88	72	100	60	116	74	36	143	. 114	70
									
56	75	30	76	89	53	117	90	135	103
35	128	71	86	43	76.	61	113	34	83
62	84	50	69	120	91	102	47	119	99
33	76	91	37	85	17	85	63	121	74
46	85	63	104	77	92	54	78	42	105
85	79	49	80	93	32	106	81	64	79
73	19	80	65	107	123	51	94	80	108
52	83	124	81	96	82	109	20	95	-68
66	41	82	98	111	67	125	97	112	58

Таблица 2.

X	21,0	21,3	21,6	21,9	22,2	22,5	22,8	23,1	m _x
0,90	1	3	2	_	_			-	6
1,05		4	2	. 3		-		_	9
1,20	_	-	5	7	6	-	_	-	18
1,35	_	-	-	6	14	9			29
1,50	-	_	_	-	7	6	7	***	20
1,65	_	_				6	7	5	18
m_y	1	7	9	16	27	21	14	5	100

Вариант 2. Таблица 1.

30,2	51,9	43,1	58,9	34,1	55,2	47,9	43,7	53,2	34,9
47,8	65,7	37,8	68,6	48,4	67,5	27,3	66,1	52,0	55,6
54,1	26,9	53,6	42,5	59,3	44,8	52,8	42,3	55,9	48,1
44,5	69,8	47,3	35,6	70,1	39,5	70,3	33,7	51,8	56,1
28,4	48,7	41,9	58,1	20,4	56,3	46,5	41,8	59,5	38,1
41,4	70,4	31,4	52,5	45,2	52,3	40,2	60,4	27,6	57,4
29,3	53,8	46,3	40,1	50,3	48,9	35,8	61,7	49,2	45,8
45,3	71,5	35,1	57,8	28,1	57,6	49,6	45,5	36,2	63,2
61,9	25,1	65,1	49,7	62,1	46,1	39,9	62,4	50,1	33,1
33,3	49,8	39,8	45,9	37,3	78,0	64,9	28,8	62,5	58,7

Таблица 2.

XY	22,0	22,4	22,8	23,2	23,6	24,0	24,4	24,8	m_{χ}
1,00	3	2	1		_	_			6
1,20	-		4	5	-	_	_		9
1,40	-		10	7	6	_			23
1,60	-	_		12	9	5		_	26
1,80	-			-	7	4	3	_	14
2,00	-	-	-	_		5	9	8	22
m_y	3	2	15	24	22	14	12	8	100

Вариант 3. Таблица 1.

1,58	1,95	0,89	1,76	1,54	2,18	1,13	2,59	1,91	1,60
1,19	1,70	2,58	1,31	2,54	1,90	2,20	1,49	2,69	1,51
1,77	1,93	1,48	2,21	1,64	2,92	1,25	1,97	0,90	1,78
1,12	2,48	1,38	1,79	1,75	0,67	2,22	1,62	1,82	1,09
1,61	1,71	0,95	2,23	1,46	1,99	2,24	1,72	2,03	1,25
1,28	2,04	- 1,83	1,69	1,81	1,22	2,05	1,07	1,74	1,88
1,80	0,69	2,07	1,29	2,27	2,75	1,41	2,08	2,30	2,15
1,34	1,84	1,73	2,31	1,86	1,40	2,46	0,73	2,33	1,85
1,02	2,13	1,66	2,84	1,16	2,34	1,44	2,89	2,09	2,90
1,87	1,43	2,11	0,84	1,91	2,44	2,10	1,75	2,60	1,68

Таблица 2.

					4				
X	2,3	3,8	5,3	6,8	7,3	8,8	10,3	11,8	m _x
210	-	4	3	5			_	_	12
340	_	6	7	8 .	-	_			21
470	-		10	12	11	_			33
600	-		_	-	5	4	3		12
730	_		-	-		6	8		14
860	_			****	-	-	3	5	8
m_y	_	10	20	25	16	10	14	5	100

Вариант 4. Таблица 1.

76,23	45,29	92,41	35,48	56,81	45,67	54,01	45,88	25,56	65,91
48,11	6,32	26,31	74,27	27,82	88,04	36,12	56,97	4,97	46,31
55,78	46,85	57,31	37,28	66,41	28,53	72,48	29,34	38,34	62,35
46,82	39,47	81,04	54,06	48,64	61,22	40,56	30,11	78,45	48,53
86,24	47,51	66,92	42,74	4,83	47,83	64,02	57,84	41,63	53,75
65,21	43,82	58,31	33,71	44,95	68,91	32,84	45,21	84,47	31,27
49,29	83,09	55,11	94,75	49,85	58,86	55,30	69,44	50,41	35,07
67,24	41,78	50,56	34,05	37,91	71,25	17,84	14,51	18,23	51,93
50,89	9,41	16,31	51,33	70,58	15,91	51,84	59,31	25,01	60,31
85,52	59,77	75,26	52,22	95,73	19,04	60,85	22,91	53,84	15,02

Таблица 2.

X	2,2	3,6	5,0	6,4	7,8	9,2	10,6	12	m_{χ}
200	5	3	4	-				_	12
360		7	8	-	_	-			15
520	_	-	9	10	14	-	-	-	33
680	-	-	_	8	7	6		_	21
840			_	-	2	3	2	-	7
1000		-	_		-	-	6	6	12
m_y	5	10	21	18	23	9	8	6	100

Вариант 5.

Таблица 1.

2,85	5,92	3,06	2,47	6,28	3,86	2,19	5,81	3,88	3,01
3,91	3,11	1,46	4,67	3,95	5,76	3,08	3,99	6,38	1,51
2,34	4,19	5,72	4,14	3,03	4,08	6,47	4,05	5,96	4,01
4,23	2,16	6,55	3,14	4,26	4,31	1,48	4,45	2,71	5,69
6,60	4,69	2,93	7,68	0,65	6,68	3,18	5,64	4,56	3,36
2,64	3,23	6,75	4,57	5,61	3,29	7,08	2,91	4,59	2,59
4,61	1,98	6,21	3,39	4,62	2,28	4,64	3,45	5,56	4,07
3,58	4,73	3,61	2,24	4,31	3,81	5,52	4,26	4,17	7,49
1,29	4,45	4,78	5,01	7,85	5,49	2,01	4,89	0,98	4,84
2,26	5,47	4,63	4,98	5,42	4,60	5,10	4,96	4,63	5,05

Таблица 2.

XY	64	72	80	88	96	104	112	120	m_{χ}
1,0	6	2	4		_			_	12
1,3	i –	3	8	6	-	-	-	-	17
1,6	_	_		8	14	5	_	-	27
1,9	_	_	-	7	8	9	-	_	24
2,2	_		_	-	4	5	6		15
2,5	-			-	-	1	.1	3	5
m_y	6	5	12	21	26	20	7	3	100

Критерии оценки (в баллах):

- 16-20 баллов выставляется студенту, если он правильно выполнил не менее 85-100% индивидуального проекта по темам, сделал необходимые выводы, умеет тесно увязывать теорию с практикой; использовал материалы дополнительной литературы, а также он умеет верно и в полном объеме: осуществлять сбор, систематизацию, формализацию, интерпретацию, первичную обработку и анализ данных для исследования конкретных ситуаций, используя методы математического, статистического, экономических экономического анализа и моделирования; выполнять все этапы операционного исследования, необходимых для решения задач принятия решений в условиях неопределённости и анализировать полученные результаты, интерпретируя их в терминах исходной задачи; использовать математические методы и модели, адекватные целям и задачам и интерпретировать полученные результаты применительно к моделируемой системе; применять и адаптировать фундаментальные математические знания, математикостатистический инструментарий, вероятностные методы; проводить систематизацию и

обработку результатов наблюдений с целью выявления статистических закономерностей при решении задач в профессиональной деятельности; выносить аргументированные суждения по вопросам, связанным с управлением и принятием решений в практике управления организацией в условиях сложного и динамичного окружения.

- 11-15 баллов выставляется студенту, если он правильно выполнил не менее 69-84% индивидуального проекта по темам, сделал необходимые выводы, умеет тесно увязывать теорию с практикой; использовал материалы дополнительной литературы, а также он **умеет с незначительными** замечаниями: осуществлять сбор, систематизацию, формализацию, интерпретацию, первичную обработку и анализ данных для исследования конкретных ситуаций, экономических используя методы статистического, экономического анализа и моделирования; выполнять все этапы операционного исследования, необходимых для решения задач принятия решений в условиях неопределённости и анализировать полученные результаты, интерпретируя их в терминах исходной задачи; использовать математические методы и модели, адекватные целям и задачам и интерпретировать полученные результаты применительно к моделируемой системе; применять и адаптировать фундаментальные математические знания, математико-статистический инструментарий, вероятностные методы; проводить систематизацию и обработку результатов наблюдений с целью выявления статистических закономерностей при решении задач в профессиональной деятельности; выносить аргументированные суждения по вопросам, связанным с управлением и принятием решений в практике управления организацией в условиях сложного и динамичного
- 6-10 баллов выставляется студенту, если он правильно выполнил не менее 51-70% индивидуального проекта по темам, частично сделал необходимые выводы, есть сложности с увязыванием теории с практикой; не использовал материалы дополнительной литературы, а также он умеет на базовом уровне, с ошибками: осуществлять сбор, систематизацию, формализацию, интерпретацию, первичную обработку и анализ данных исследования конкретных экономических ситуаций, используя математического, статистического, экономического анализа и моделирования; выполнять все этапы операционного исследования, необходимых для решения задач принятия решений в условиях неопределённости и анализировать полученные результаты, интерпретируя их в терминах исходной задачи; использовать математические методы и модели, адекватные целям и задачам и интерпретировать полученные результаты применительно к моделируемой системе; применять и адаптировать фундаментальные математические знания, математико-статистический инструментарий, вероятностные методы; проводить систематизацию и обработку результатов наблюдений с целью выявления статистических закономерностей при решении задач в профессиональной деятельности; выносить аргументированные суждения по вопросам, связанным с управлением и принятием решений в практике управления организацией в условиях сложного и динамичного окружения.
- 0-5 баллов выставляется студенту, если он правильно выполнил не менее 50% индивидуального проекта по темам, не сделал необходимые выводы, не умеет тесно увязывать теорию с практикой; не использовал материалы дополнительной литературы, не может грамотно и последовательно изложить материал, допускает ошибки и неточности, присутствуют нарушения логической последовательности в изложении ответа на вопросы, а также он не умеет на базовом уровне: осуществлять сбор, систематизацию, формализацию, интерпретацию, первичную обработку и анализ данных для исследования экономических ситуаций, используя методы конкретных математического, статистического, экономического анализа и моделирования; выполнять все этапы операционного исследования, необходимых для решения задач принятия решений в условиях неопределённости и анализировать полученные результаты, интерпретируя их в терминах исходной задачи; использовать математические методы и модели, адекватные

целям и задачам и интерпретировать полученные результаты применительно к моделируемой системе; применять и адаптировать фундаментальные математические знания, математико-статистический инструментарий, вероятностные методы; проводить систематизацию и обработку результатов наблюдений с целью выявления статистических закономерностей при решении задач в профессиональной деятельности; выносить аргументированные суждения по вопросам, связанным с управлением и принятием решений в практике управления организацией в условиях сложного и динамичного окружения.

МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ, ХАРАКТЕРИЗУЮЩИЕ ЭТАПЫ ФОРМИРОВАНИЯ КОМПЕТЕНЦИЙ ВО ВРЕМЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

Структура зачётного задания

Наименование оценочного средства	Максимальное количество баллов
Bonpoc 1	10
Bonpoc 2	10
Практическое задание (расчетно-аналитическое)	10
Практическое задание (расчетно-аналитическое)	10

Задания, включаемые в зачётное задание

Перечень вопросов к зачёту с оценкой:

- 1. Пространство элементарных событий. Операции над событиями. Понятие события для дискретного и для непрерывного пространства элементарных событий.
- 2. Вероятность и ее свойства.
- 3. Дискретные вероятностные пространства. Задание вероятности в этом случае. Классическое определение вероятности.
- 4. Непрерывные вероятностные пространства. Геометрическое определение вероятности.
- 5. Условные вероятности. Вероятность произведения п событий.
- 6. Попарная и взаимная независимость событий, их взаимосвязь.
- 7. Формулы полной вероятности и Байеса.
- 8. Последовательность независимых испытаний Бернулли. Вероятность т успехов.
- 9. Предельные теоремы в схеме Бернулли. Теорема Пуассона. Локальная и интегральная теоремы Муавра-Лапласа.
- 10. Случайные величины (скалярные и векторные). Дискретные и абсолютно непрерывные случайные величины.

- 11. Закон распределения и функция распределения случайной величины. Их вид в случае дискретного вероятностного пространства.
- 12. Примеры дискретных законов распределения (бернуллиевский. биномиальный, пуассоновский, геометрический).
- 13. Плотность распределения и функция распределения непрерывной случайной величины и их свойства. Квантиль.
- 14. Примеры непрерывных законов распределения (равномерное, экспоненциальное, нормальное и др.). Области их применения.
- 15. Закон распределения случайного вектора. Частные и условные распределения компонент случайного вектора.
- 16. Независимость случайных величин. Теорема о независимости функций от независимых случайных величин.
- 17. Математическое ожидание. Свойства математического ожидания. Начальные моменты.
- 18. Дисперсия. Свойства дисперсии. Центральные моменты.
- 19. Ковариация. Коэффициент корреляции. Их свойства. Корреляционная и ковариационная матрицы.
- 20. Неравенства Чебышева. Правило "трех сигма".
- 21. Сходимость по вероятности последовательности случайных величин. Закон больших чисел. Теоремы Чебышева и Хинчина.
- 22. Сходимость по распределению последовательности случайных величин. Центральная предельная теорема.
- 23. Основные понятия, связанные со статистическим экспериментом: выборка, генеральная совокупность, выборочное пространство, вариационный ряд, статистическое распределение частот.
- 24. Эмпирическая функция распределения, и ее свойства. Теорема Гливенко-Кантелли. Гистограмма и полигон частот.
- 25. Статистики. Точечные оценки. Свойства оценок.
- 26. Выборочный метод оценивания. Выборочные математическое ожидание и дисперсия, исследование их на несмещенность, состоятельность, асимптотическую нормальность.
- 27. Метод моментов.
- 28. Метод максимального правдоподобия.
- 29. Основные статистические распределения, связанные с оценками параметров нормального закона.
- 30. Доверительные интервалы. Построение доверительных интервалов для параметров нормального закона.
- 31. Понятия, связанные с проверкой гипотез: критерий, критическая область, ошибки 1-го и 2-го рода, мощность, уровень значимости.
- 32. Проверка гипотез о параметрах нормальной выборки.

Типовые расчетно-аналитические задания/задачи к билету:

- 1. В группе 13 студентов, среди которых 8 отличников. По списку наудачу отобраны 9 студентов. Найти вероятность того, что среди отобранных студентов 6 отличников.
- 2. В магазине имеется 45% холодильников, изготовленных на 1-м заводе, 20% на 2-м, остальные на 3-м заводе. Вероятности того, что холодильники, изготовленные на этих заводах не потребуют ремонта в течение гарантийного срока, равны соответственно 0.9, 0.8, 0.96. Найти вероятность того, что купленный наудачу холодильник потребует ремонта в течение гарантийного срока.
- 3. Партия изделий содержит 0.95% брака. Каков должен быть объем контрольной выборки, чтобы вероятность обнаружить в ней хотя бы одно бракованное изделие была не меньше 0.9?
- 4. В урне 10 шаров: 4 белых, остальные черные. Найти закон распределения случайной величины X числа белых шаров, если из урны один за одним не глядя вынули 2 шара. Найти математическое ожидание случайной величины X и ее функцию распределения. Найти вероятность того, что число вынутых белых шаров окажется больше математического ожидания.
- 5. Размер дневной выручки магазина распределен по нормальному закону. Средняя выручка в день составляет 50 тысяч рублей, а среднее квадратическое отклонение равно 9 тысячам. Составить функцию плотности вероятности и функцию распределения выручки магазина. Найти вероятность того, что выручка в случайно выбранный день: а) составит от 40 до 70 тысяч; б) будет отличаться от средней выручки не более чем на 20 тысяч.
- 6. Двумерная случайная величина (X,Y) задана законом распределения

	X=1	X=2	X=3
Y=1	0.12	0.23	0.17
Y=2	0.15	0.2	0.13

Найти: 1) безусловные законы распределения случайных величин X и Y;

- 2) P(X < x; Y < y) при условии, что $x \in (-1; 1], y \in (0; 1]; 3)$ коэффициент корреляции с.в. (X; Y). Являются ли X и Y зависимыми? Обосновать свой ответ.
- 7. В городах А и Б проведены выборочные обследования доходов жителей. По выборкам из 100 человек получено, что в А средний доход 8020 рублей с выборочным средним квадратическим отклонением 190 рублей, в Б средний доход 7960 рублей с выборочным средним квадратическим отклонением 160 рублей. Можно ли утверждать на уровне значимости 5%, что в А живут в среднем богаче, чем в Б?
- 8. Вероятность того, что случайно взятая деталь окажется второго сорта, равна 3/8. Сколько нужно произвести испытаний, чтобы с вероятностью, равной 0,995, можно было утверждать, что частота отклонится от вероятности менее, чем на 0,01?
- 9. За 100 рабочих дней в магазин в среднем обращалось 289 человек в день. Известно, что число покупателей в день описывается распределением Пуассона. Построить доверительный интервал для среднего числа покупателей в день с надежностью 90%.

Показатели и критерии оценивания планируемых результатов освоения компетенций и результатов обучения, шкала оценивания

I	Икала оценивания	Формируемые компетенции	Индикатор достижения компетенции	Критерии оценивания	Уровень освоения компетенций
85 — 100 баллов	«отлично»/ «зачтено»	OПК-1. OПК-6.	ОПК-1.1; ОПК-6.1; ОПК-6.2	Знает верно и в полном объеме: основные статистические процедуры при обработке данных и алгоритмы проверки статистических гипотез; основные методы исследования, приемы и инструменты математического, статистического, экономического анализа и моделирования; основные методы и подходы, используемые в теории вероятностей и математической статистике, фундаментальные основы применения математико- статистического инструментария; основы вероятностно- статистического инструментария; основы вероятностно- статистического оценивания многомерных параметров сложных социально-экономических процессов и явлений; основные понятия, используемые для математического описания задач профессиональной деятельности и современные подходы к принятию управленческих решений на основе применения методов оптимизации. Умеет верно и в полном объеме: осуществлять сбор, систематизацию, формализацию, интерпретацию, первичную обработку и анализ данных для исследования конкретных экономических ситуаций, используя методы математического, статистического, экономического анализа и моделирования; выполнять все этапы операционного исследования, необходимых для решения задач принятия решений в условиях неопределённости и анализировать полученные результаты, интерпретируя их в терминах исходной задачи; использовать математические методы и модели, адекватные целям и задачам и интерпретировать полученные результаты полученные полученные полученные результаты полученные результаты полученные результаты полученные полученные полученные полученные полученные результаты полученные получ	Продвинутый

				инструментарий, вероятностные	
				методы; проводить систематизацию и обработку результатов	
				наблюдений с целью выявления	
				статистических закономерностей при решении задач в	
				профессиональной деятельности;	
				выносить аргументированные	
				суждения по вопросам, связанным с	
				управлением и принятием решений	
				в практике управления организацией в условиях сложного и	
				динамичного окружения.	
		ОПК-1.	ОПК-1.1;	Знает с незначительными	Повышенный
		ОПК-6.	ОПК-1.2; ОПК-6.1;	замечаниями:	
			ОПК-6.1,	основные статистические процедуры при обработке данных и	
			01111 0.2	алгоритмы проверки статистических	
				гипотез; основные методы	
				исследования, приемы и	
				инструменты математического, статистического, экономического	
				анализа и моделирования; основные	
				методы и подходы, используемые в	
				теории вероятностей и	
				математической статистике, фундаментальные основы	
				применения математико-	
				статистического инструментария;	
				основы вероятностно-	
				статистического оценивания	
				многомерных параметров сложных социально-экономических	
				процессов и явлений; основные	
				понятия, используемые для	
				математического описания задач	
70 - 84	«хорошо»/			профессиональной деятельности и современный математический	
баллов	«зачтено»			инструментарий; традиционные и	
				современные подходы к принятию	
				управленческих решений на основе	
				применения методов оптимизации.	
				Умеет с незначительными	
				замечаниями:	
				осуществлять сбор, систематизацию, формализацию,	
				интерпретацию, первичную	
				обработку и анализ данных для	
				исследования конкретных	
				экономических ситуаций, используя методы математического,	
				статистического, экономического	
				анализа и моделирования;	
				выполнять все этапы операционного	
				исследования, необходимых для решения задач принятия решений в	
				условиях неопределённости и	
				анализировать полученные	
				результаты, интерпретируя их в	
				терминах исходной задачи;	
			<u> </u>	использовать математические	

				методы и модели, адекватные целям и задачам и интерпретировать полученные результаты применительно к моделируемой системе; применять и адаптировать фундаментальные математические знания, математико-статистический инструментарий, вероятностные методы; проводить систематизацию и обработку результатов наблюдений с целью выявления статистических закономерностей при решении задач в профессиональной деятельности; выносить аргументированные суждения по вопросам, связанным с управлением и принятием решений в практике управления организацией в условиях сложного и динамичного окружения.	
50 – 69 баллов	«удовлетворительно»/ «зачтено»	ОПК-6.	ОПК-1.1; ОПК-1.2; ОПК-6.1; ОПК-6.2	Знает на базовом уровне, с опибками: основные статистические процедуры при обработке данных и алгоритмы проверки статистических гипотез; основные методы исследования, приемы и инструменты математического, статистического, экономического анализа и моделирования; основные методы и подходы, используемые в теории вероятностей и математической статистике, фундаментальные основы применения математикостатистического инструментария; основы вероятностностатистического оценивания многомерных параметров сложных социально-экономических процессов и явлений; основные понятия, используемые для математического описания задач профессиональной деятельности и современный математический инструментарий; традиционные и современные подходы к принятию управленческих решений на основе применения методов оптимизации. Умеет на базовом уровне, с ошибками: осуществлять сбор, систематизацию, формализацию, интерпретацию, первичную обработку и анализ данных для исследования конкретных экономических ситуаций, используя методы математического, статистического, экономического анализа и моделирования;	Базовый

менее 50 баллов	«неудовлетворительно»/ «не зачтено»	ОПК-1. ОПК-6.	ОПК-1.1; ОПК-1.2; ОПК-6.1; ОПК-6.2	выполнять все этапы операционного исследования, необходимых для решения задач принятия решений в условиях неопределённости и анализировать полученные результаты, интерпретируя их в терминах исходной задачи; использовать математические методы и модели, адекватные целям и задачам и интерпретировать полученные результаты применительно к моделируемой системе; применять и адаптировать фундаментальные математические знания, математико-статистический инструментарий, вероятностные методы; проводить систематизацию и обработку результатов наблюдений с целью выявления статистических закономерностей при решении задач в профессиональной деятельности; выносить аргументированные суждения по вопросам, связанным с управлением и принятием решений в практике управления организацией в условиях сложного и динамичного окружения. Не знает на базовом уровне: основные статистических гипотез; основные методы исследования, приемы и инструменты математического, статистического, экономического анализа и моделирования; основные методы и подходы, используемые в теории вероятностей и математической статистике, фундаментальные основы применения математикостатистического инструментария; основы вероятностей и математической статистике, фундаментальные основы применения математикостатистического оценивания многомерных параметров сложных социально-экономических процессов и явлений; основные понятия, используемые для математического описания задач профессиональной деятельности и современный математический инструментарий; традиционные и инструментарий; традиционные и	Компетенции не сформированы

	обработку и анализ данных для	
	исследования конкретных	
	экономических ситуаций, используя	
	методы математического,	
	статистического, экономического	
	анализа и моделирования;	
	выполнять все этапы операционного	
	исследования, необходимых для	
	решения задач принятия решений в	
	условиях неопределённости и	
	анализировать полученные	
	результаты, интерпретируя их в	
	терминах исходной задачи;	
	использовать математические	
	методы и модели, адекватные целям	
	и задачам и интерпретировать	
	полученные результаты	
	применительно к моделируемой	
	системе; применять и адаптировать	
	фундаментальные математические	
	знания, математико-статистический	
	инструментарий, вероятностные	
	методы; проводить систематизацию	
	и обработку результатов	
	наблюдений с целью выявления	
	статистических закономерностей	
	при решении задач в	
	профессиональной деятельности;	
	выносить аргументированные	
	суждения по вопросам, связанным с	
	управлением и принятием решений	
	в практике управления	
	организацией в условиях сложного и	
	динамичного окружения.	
	1	
LL		